Your browser doesn't support javascript.
loading
Cell-type-specific plasticity shapes neocortical dynamics for motor learning.
Majumder, Shouvik; Hirokawa, Koichi; Yang, Zidan; Paletzki, Ronald; Gerfen, Charles R; Fontolan, Lorenzo; Romani, Sandro; Jain, Anant; Yasuda, Ryohei; Inagaki, Hidehiko K.
Afiliación
  • Majumder S; Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
  • Hirokawa K; Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
  • Yang Z; Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
  • Paletzki R; National Institute of Mental Health, Bethesda, MD 20814, USA.
  • Gerfen CR; National Institute of Mental Health, Bethesda, MD 20814, USA.
  • Fontolan L; Turing Centre for Living Systems, Aix- Marseille University, INSERM, INMED U1249, Marseille, France.
  • Romani S; Janelia Research Campus, HHMI, Ashburn VA 20147, USA.
  • Jain A; Janelia Research Campus, HHMI, Ashburn VA 20147, USA.
  • Yasuda R; Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
  • Inagaki HK; Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.
bioRxiv ; 2023 Aug 14.
Article en En | MEDLINE | ID: mdl-37609277
ABSTRACT
Neocortical spiking dynamics control aspects of behavior, yet how these dynamics emerge during motor learning remains elusive. Activity-dependent synaptic plasticity is likely a key mechanism, as it reconfigures network architectures that govern neural dynamics. Here, we examined how the mouse premotor cortex acquires its well-characterized neural dynamics that control movement timing, specifically lick timing. To probe the role of synaptic plasticity, we have genetically manipulated proteins essential for major forms of synaptic plasticity, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Cofilin, in a region and cell-type-specific manner. Transient inactivation of CaMKII in the premotor cortex blocked learning of new lick timing without affecting the execution of learned action or ongoing spiking activity. Furthermore, among the major glutamatergic neurons in the premotor cortex, CaMKII and Cofilin activity in pyramidal tract (PT) neurons, but not intratelencephalic (IT) neurons, is necessary for learning. High-density electrophysiology in the premotor cortex uncovered that neural dynamics anticipating licks are progressively shaped during learning, which explains the change in lick timing. Such reconfiguration in behaviorally relevant dynamics is impeded by CaMKII manipulation in PT neurons. Altogether, the activity of plasticity-related proteins in PT neurons plays a central role in sculpting neocortical dynamics to learn new behavior.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos