Your browser doesn't support javascript.
loading
Development and validation of a machine learning-based prognostic risk stratification model for acute ischemic stroke.
Wang, Kai; Hong, Tao; Liu, Wencai; Xu, Chan; Yin, Chengliang; Liu, Haiyan; Wei, Xiu'e; Wu, Shi-Nan; Li, Wenle; Rong, Liangqun.
Afiliación
  • Wang K; Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
  • Hong T; Key Laboatory of Neurological Diseases, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
  • Liu W; Pediatric Surgery Ward, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.
  • Xu C; Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, 110000, China.
  • Yin C; Postgraduate College, Dalian Medical University, Dalian, 116000, China.
  • Liu H; Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
  • Wei X; The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China.
  • Wu SN; Faculty of Medicine, Macau University of Science and Technology, Macau, China.
  • Li W; Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
  • Rong L; Key Laboatory of Neurological Diseases, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
Sci Rep ; 13(1): 13782, 2023 08 23.
Article en En | MEDLINE | ID: mdl-37612344
Acute ischemic stroke (AIS) is a most prevalent cause of serious long-term disability worldwide. Accurate prediction of stroke prognosis is highly valuable for effective intervention and treatment. As such, the present retrospective study aims to provide a reliable machine learning-based model for prognosis prediction in AIS patients. Data from AIS patients were collected retrospectively from the Second Affiliated Hospital of Xuzhou Medical University between August 2017 and July 2019. Independent prognostic factors were identified by univariate and multivariate logistic analysis and used to develop machine learning (ML) models. The ML model performance was assessed by area under the receiver operating characteristic curve (AUC) and radar plot. Shapley Additive explanations (SHAP) values were used to interpret the importance of all features included in the predictive model. A total of 677 AIS patients were included in the present study. Poor prognosis was observed in 209 patients (30.9%). Six variables, including neuron specific enolase (NSE), homocysteine (HCY), S-100ß, dysphagia, C-reactive protein (CRP), and anticoagulation were included to establish ML models. Six different ML algorithms were tested, and Random Forest model was selected as the final predictive model with the greatest AUC of 0.908. Moreover, according to SHAP results, NSE impacted the predictive model the most, followed by HCY, S-100ß, dysphagia, CRP and anticoagulation. Based on the RF model, an online tool was constructed to predict the prognosis of AIS patients and assist clinicians in optimizing patient treatment. The present study revealed that NSE, HCY, CRP, S-100ß, anticoagulation, and dysphagia were important factors for poor prognosis in AIS patients. ML algorithms were used to develop predictive models for predicting the prognosis of AIS patients, with the RF model presenting the optimal performance.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Trastornos de Deglución / Accidente Cerebrovascular Isquémico Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Trastornos de Deglución / Accidente Cerebrovascular Isquémico Tipo de estudio: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Sci Rep Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido