Your browser doesn't support javascript.
loading
Reinforcement Learning-Based Decentralized Safety Control for Constrained Interconnected Nonlinear Safety-Critical Systems.
Qin, Chunbin; Wu, Yinliang; Zhang, Jishi; Zhu, Tianzeng.
Afiliación
  • Qin C; School of Artificial Intelligence, Henan University, Zhengzhou 450046, China.
  • Wu Y; School of Artificial Intelligence, Henan University, Zhengzhou 450046, China.
  • Zhang J; School of Software, Henan University, Kaifeng 475000, China.
  • Zhu T; School of Artificial Intelligence, Henan University, Zhengzhou 450046, China.
Entropy (Basel) ; 25(8)2023 Aug 02.
Article en En | MEDLINE | ID: mdl-37628188
This paper addresses the problem of decentralized safety control (DSC) of constrained interconnected nonlinear safety-critical systems under reinforcement learning strategies, where asymmetric input constraints and security constraints are considered. To begin with, improved performance functions associated with the actuator estimates for each auxiliary subsystem are constructed. Then, the decentralized control problem with security constraints and asymmetric input constraints is transformed into an equivalent decentralized control problem with asymmetric input constraints using the barrier function. This approach ensures that safety-critical systems operate and learn optimal DSC policies within their safe global domains. Then, the optimal control strategy is shown to ensure that the entire system is uniformly ultimately bounded (UUB). In addition, all signals in the closed-loop auxiliary subsystem, based on Lyapunov theory, are uniformly ultimately bounded, and the effectiveness of the designed method is verified by practical simulation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Entropy (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Entropy (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza