Your browser doesn't support javascript.
loading
Removal of Microcystis aeruginosa by manganese activated sodium percarbonate: Performance and role of the in-situ formed MnO2.
Li, Nan; Chen, Fan; Xu, Shunkai; Zhu, Shumin; Bu, Lingjun; Deng, Lin; Shi, Zhou; Zhou, Shiqing.
Afiliación
  • Li N; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
  • Chen F; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
  • Xu S; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
  • Zhu S; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China. Electronic address
  • Bu L; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
  • Deng L; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
  • Shi Z; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
  • Zhou S; Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
Chemosphere ; 341: 140054, 2023 Nov.
Article en En | MEDLINE | ID: mdl-37669718
ABSTRACT
Previous studies have found that pre-oxidation of manganese salts such as potassium permanganate and potassium manganate can remove algae in water, while existing problems such as excessive oxidation and appearance of chromaticity. In this study, our objective was to induce a Fenton-like reaction by activating sodium percarbonate (SPC) with divalent manganese (Mn(II)) to pre-oxidize algae-contaminated water. The optimal dosage of Mn(II)/SPC was determined by assessing the zeta potential of the algae and the residual Mn(II) in the solution. Moreover, we conducted a characterization of the cells post-reaction and assessed the levels of dissolved organic carbon (DOC). The disinfection by-products (DBPs) (sodium hypochlorite disinfection)of the algae-containing water subsequent to Mn(II)/SPC treatment were measured. Experiments show that Mn(II)/SPC pre-oxidation at optimal dosage acquired 88% removal of algae and less damage to the cell membrane. Moreover, the Mn(II) acted not only as a catalyst but also formed MnO2 which adsorbed onto the cell surface and facilitated sedimentation. Furthermore, this technology exhibits the capability to effectively manage algal organic matters present in water, thereby mitigating the formation of nitrogen-containing DBPs. These results highlight the potential of Mn(II)/SPC treatment for treating water contaminated with algae, thus ensuring the safety and quality of water resources.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microcystis Idioma: En Revista: Chemosphere Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Microcystis Idioma: En Revista: Chemosphere Año: 2023 Tipo del documento: Article
...