Your browser doesn't support javascript.
loading
Bioinspired Heterogeneous Construction of Lignocellulose-Reinforced COF Membranes for Efficient Proton Conduction.
Zhu, Liyu; Ye, Peng; Zhang, Limei; Ren, Yuting; Liu, Jing; Lei, Jiandu; Wang, Luying.
Afiliación
  • Zhu L; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China.
  • Ye P; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, P. R. China.
  • Zhang L; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China.
  • Ren Y; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China.
  • Liu J; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China.
  • Lei J; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China.
  • Wang L; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, P. R. China.
Small ; 20(3): e2304575, 2024 Jan.
Article en En | MEDLINE | ID: mdl-37675819
ABSTRACT
The exponential interest in covalent organic frameworks (COFs) arises from the direct correlation between their diverse and intriguing properties and the modular design principle. However, the insufficient interlamellar interaction among COF nanosheets greatly hinders the formation of defect-free membranes. Therefore, developing a methodology for the facile fabrication of these materials remains an enticing and highly desirable objective. Herein, ultrahigh proton conductivity and superior stability are achieved by taking advantage of COF composite membranes where 2D TB-COF nanosheets are linked by 1D lignocellulosic nanofibrils (LCNFs) through π-π and electrostatic interactions to form a robust and ordered structure. Notably, the high concentration of -SO3 H groups within the COF pores and the abundant proton transport paths at COFs-LCNFs interfaces impart composite membranes ultrahigh proton conductivity (0.348 S cm-1 at 80 °C and 100% RH). Moreover, the directional migration of protons along the stacked nanochannels of COFs is facilitated by oxygen atoms on the keto groups, as demonstrated by density functional theory (DFT) calculations. The simple design concept and reliable operation of the demonstrated mixed-dimensional composite membrane are expected to provide an ideal platform for next-generation conductive materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article