Your browser doesn't support javascript.
loading
Acetonyl Peroxy and Hydroperoxy Self- and Cross-Reactions: Temperature-Dependent Kinetic Parameters, Branching Fractions, and Chaperone Effects.
Zuraski, Kristen; Grieman, Fred J; Hui, Aileen O; Cowen, Julia; Winiberg, Frank A F; Percival, Carl J; Okumura, Mitchio; Sander, Stanley P.
Afiliación
  • Zuraski K; NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States.
  • Grieman FJ; NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States.
  • Hui AO; Seaver Chemistry Laboratory, Pomona College, Claremont, California 91711, United States.
  • Cowen J; Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
  • Winiberg FAF; NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States.
  • Percival CJ; Seaver Chemistry Laboratory, Pomona College, Claremont, California 91711, United States.
  • Okumura M; NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States.
  • Sander SP; NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States.
J Phys Chem A ; 127(37): 7772-7792, 2023 Sep 21.
Article en En | MEDLINE | ID: mdl-37683115
ABSTRACT
The temperature-dependent kinetic parameters, branching fractions, and chaperone effects of the self- and cross-reactions between acetonyl peroxy (CH3C(O)CH2O2) and hydro peroxy (HO2) have been studied using pulsed laser photolysis coupled with infrared (IR) wavelength-modulation spectroscopy and ultraviolet absorption (UVA) spectroscopy. Two IR lasers simultaneously monitored HO2 and hydroxyl (OH), while UVA measurements monitored CH3C(O)CH2O2. For the CH3C(O)CH2O2 self-reaction (T = 270-330 K), the rate parameters were determined to be A = (1.5-0.3+0.4) × 10-13 and Ea/R = -996 ± 334 K and the branching fraction to the alkoxy channel, k2b/k2, showed an inverse temperature dependence following the expression, k2b/k2 = (2.27 ± 0.62) - [(6.35 ± 2.06) × 10-3] T(K). For the reaction between CH3C(O)CH2O2 and HO2 (T = 270-330 K), the rate parameters were determined to be A = (3.4-1.5+2.5) × 10-13 and Ea/R = -547 ± 415 K for the hydroperoxide product channel and A = (6.23-4.4+15.3) × 10-17 and Ea/R = -3100 ± 870 K for the OH product channel. The branching fraction for the OH channel, k1b /k1, follows the temperature-dependent expression, k1b/k1 = (3.27 ± 0.51) - [(9.6 ± 1.7) × 10-3] T(K). Determination of these parameters required an extensive reaction kinetics model which included a re-evaluation of the temperature dependence of the HO2 self-reaction chaperone enhancement parameters due to the methanol-hydroperoxy complex. The second-law thermodynamic parameters for KP,M for the formation of the complex were found to be ΔrH250K° = -38.6 ± 3.3 kJ mol-1 and ΔrS250K° = -110.5 ± 13.2 J mol-1 K-1, with the third-law analysis yielding ΔrH250K° = -37.5 ± 0.25 kJ mol-1. The HO2 self-reaction rate coefficient was determined to be k4 = (3.34-0.80+1.04) × 10-13 exp [(507 ± 76)/T]cm3 molecule-1 s-1 with the enhancement term k4,M″ = (2.7-1.7+4.7) × 10-36 exp [(4700 ± 255)/T]cm6 molecule-2 s-1, proportional to [CH3OH], over T = 220-280 K. The equivalent chaperone enhancement parameter for the acetone-hydroperoxy complex was also required and determined to be k4,A″ = (5.0 × 10-38 - 1.4 × 10-41) exp[(7396 ± 1172)/T] cm6 molecule-2 s-1, proportional to [CH3C(O)CH3], over T = 270-296 K. From these parameters, the rate coefficients for the reactions between HO2 and the respective complexes over the given temperature ranges can be estimated for HO2·CH3OH, k12 = [(1.72 ± 0.050) × 10-11] exp [(314 ± 7.2)/T] cm3 molecule-1 s-1 and for HO2·CH3C(O)CH3, k15 = [(7.9 ± 0.72) × 10-17] exp [(3881 ± 25)/T] cm3 molecule-1 s-1. Lastly, an estimate of the rate coefficient for the HO2·CH3OH self-reaction was also determined to be k13 = (1.3 ± 0.45) × 10-10 cm3 molecule-1 s-1.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem A Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...