Your browser doesn't support javascript.
loading
Data-Driven Optimization of DIA Mass Spectrometry by DO-MS.
Wallmann, Georg; Leduc, Andrew; Slavov, Nikolai.
Afiliación
  • Wallmann G; Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, Northeastern University, Boston, Massachusetts 02115, United States.
  • Leduc A; Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, Northeastern University, Boston, Massachusetts 02115, United States.
  • Slavov N; Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, Northeastern University, Boston, Massachusetts 02115, United States.
J Proteome Res ; 22(10): 3149-3158, 2023 10 06.
Article en En | MEDLINE | ID: mdl-37695820
Mass spectrometry (MS) enables specific and accurate quantification of proteins with ever-increasing throughput and sensitivity. Maximizing this potential of MS requires optimizing data acquisition parameters and performing efficient quality control for large datasets. To facilitate these objectives for data-independent acquisition (DIA), we developed a second version of our framework for data-driven optimization of MS methods (DO-MS). The DO-MS app v2.0 (do-ms.slavovlab.net) allows one to optimize and evaluate results from both label-free and multiplexed DIA (plexDIA) and supports optimizations particularly relevant to single-cell proteomics. We demonstrate multiple use cases, including optimization of duty cycle methods, peptide separation, number of survey scans per duty cycle, and quality control of single-cell plexDIA data. DO-MS allows for interactive data display and generation of extensive reports, including publication of quality figures that can be easily shared. The source code is available at github.com/SlavovLab/DO-MS.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Proteínas Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Proteínas Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos