Comparison and Incorporation of Reasoning and Learning Approaches for Cancer Therapy Research.
Stud Health Technol Inform
; 307: 161-171, 2023 Sep 12.
Article
en En
| MEDLINE
| ID: mdl-37697850
Representing knowledge in a comprehensible and maintainable way and transparently providing inferences thereof are important issues, especially in the context of applications related to artificial intelligence in medicine. This becomes even more obvious if the knowledge is dynamically growing and changing and when machine learning techniques are being involved. In this paper, we present an approach for representing knowledge about cancer therapies collected over two decades at St.-Johannes-Hospital in Dortmund, Germany. The presented approach makes use of InteKRator, a toolbox that combines knowledge representation and machine learning techniques, including the possibility of explaining inferences. An extended use of InteKRator's reasoning system will be introduced for being able to provide the required inferences. The presented approach is general enough to be transferred to other data, as well as to other domains. The approach will be evaluated, e. g., regarding comprehensibility, accuracy and reasoning efficiency.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Medicina
/
Neoplasias
Límite:
Humans
País/Región como asunto:
Europa
Idioma:
En
Revista:
Stud Health Technol Inform
Asunto de la revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Año:
2023
Tipo del documento:
Article
Pais de publicación:
Países Bajos