Your browser doesn't support javascript.
loading
Strong non-uniformity correction algorithm based on spectral shaping statistics and LMS.
Opt Express ; 31(19): 30693-30709, 2023 Sep 11.
Article en En | MEDLINE | ID: mdl-37710608
ABSTRACT
The existence of non-uniformity in infrared detector output images is a widespread problem that significantly degrades image quality. Existing scene-based non-uniformity correction algorithms typically struggle to balance strong non-uniformity correction with scene adaptability. To address this issue, we propose a novel scene-based algorithm that leverages the frequency characteristics of the non-uniformity, combine and improve single-frame stripe removal, multi-scale statistics, and least mean square (LMS) methods. Following the "coarse-to-fine" correction process, the coarse correction stage introduces an adaptive progressive correction strategy based on Laplacian pyramids. By improving 1-D guided filtering and high-pass filtering to shape high-frequency sub-bands, non-uniformity can be well separated from the scene, effectively suppressing ghosting. In the fine correction stage, we optimize the expected image estimation and spatio-temporal adaptive learning rates based on guided filtering LMS method. To validate the efficacy of our algorithm, we conduct extensive simulation and real experiments, demonstrating its adaptability to various scene conditions and its effectiveness in correcting strong non-uniformity.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2023 Tipo del documento: Article