Your browser doesn't support javascript.
loading
Reduced basis surrogates for quantum spin systems based on tensor networks.
Brehmer, Paul; Herbst, Michael F; Wessel, Stefan; Rizzi, Matteo; Stamm, Benjamin.
Afiliación
  • Brehmer P; Institute for Theoretical Solid State Physics, RWTH Aachen University, Otto-Blumenthal-Strasse 26, 52074 Aachen, Germany.
  • Herbst MF; Mathematics for Materials Modelling, Institute of Mathematics & Institute of Materials, EPFL, CH-1015 Lausanne, Switzerland.
  • Wessel S; Institute for Theoretical Solid State Physics, RWTH Aachen University, Otto-Blumenthal-Strasse 26, 52074 Aachen, Germany.
  • Rizzi M; Forschungszentrum Jülich GmbH, Institute of Quantum Control, Peter Grünberg Institut (PGI-8), 52425 Jülich, Germany.
  • Stamm B; Institute for Theoretical Physics, University of Cologne, D-50937 Köln, Germany.
Phys Rev E ; 108(2-2): 025306, 2023 Aug.
Article en En | MEDLINE | ID: mdl-37723733
Within the reduced basis methods approach, an effective low-dimensional subspace of a quantum many-body Hilbert space is constructed in order to investigate, e.g., the ground-state phase diagram. The basis of this subspace is built from solutions of snapshots, i.e., ground states corresponding to particular and well-chosen parameter values. Here, we show how a greedy strategy to assemble the reduced basis and thus to select the parameter points can be implemented based on matrix-product-state calculations. Once the reduced basis has been obtained, observables required for the computation of phase diagrams can be computed with a computational complexity independent of the underlying Hilbert space for any parameter value. We illustrate the efficiency and accuracy of this approach for different one-dimensional quantum spin-1 models, including anisotropic as well as biquadratic exchange interactions, leading to rich quantum phase diagrams.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2023 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos