Your browser doesn't support javascript.
loading
An Early Prediction Model for Estimating Bronchopulmonary Dysplasia in Preterm Infants.
Kostekci, Yasemin Ezgi; Bakirarar, Batuhan; Okulu, Emel; Erdeve, Omer; Atasay, Begum; Arsan, Saadet.
Afiliación
  • Kostekci YE; Division of Neonatology, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey.
  • Bakirarar B; Department of Biostatistics, Ankara University Faculty of Medicine, Ankara, Turkey.
  • Okulu E; Division of Neonatology, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey.
  • Erdeve O; Division of Neonatology, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey.
  • Atasay B; Division of Neonatology, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey.
  • Arsan S; Division of Neonatology, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey.
Neonatology ; 120(6): 709-717, 2023.
Article en En | MEDLINE | ID: mdl-37725910
INTRODUCTION: Accurate assessment of the risk for bronchopulmonary dysplasia (BPD) is critical to determine the prognosis and identify infants who will benefit from preventive therapies. Clinical prediction models can support the identification of high-risk patients. In this study, we investigated the potential risk factors for BPD and compared machine learning models for predicting the outcome of BPD/death on days 1, 7, 14, and 28 in preterm infants. We also developed a local BPD estimator. METHODS: This study involved 124 infants. We evaluated the composite outcome of BPD/death at a postmenstrual age of 36 weeks and identified risk factors that would improve BPD/death prediction. SPSS for Windows Version 11.5 and Weka 3.9 software were used for the data analysis. RESULTS: To evaluate the combined effect of all variables, all risk factors were taken into consideration. Gestational age, birth weight, mode of respiratory support, intraventricular hemorrhage, necrotizing enterocolitis, surfactant requirement, and late-onset sepsis were risk factors on postnatal days 7, 14, and 28. In a comparison of four different time points (postnatal days 1, 7, 14, and 28), the day 7 model provided the best prediction. According to this model, when a patient was diagnosed with BPD/death, the accuracy rate was 89.5%. CONCLUSION: The postnatal day 7 model was the best predictor of BPD or death. Future validation studies will help identify infants who may benefit from preventive therapies and develop individualized care.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Displasia Broncopulmonar / Fármacos del Sistema Respiratorio Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans / Infant / Newborn Idioma: En Revista: Neonatology Asunto de la revista: PERINATOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Turquía Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Displasia Broncopulmonar / Fármacos del Sistema Respiratorio Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans / Infant / Newborn Idioma: En Revista: Neonatology Asunto de la revista: PERINATOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Turquía Pais de publicación: Suiza