Your browser doesn't support javascript.
loading
Structure preserving adversarial generation of labeled training samples for single-cell segmentation.
Tasnadi, Ervin; Sliz-Nagy, Alex; Horvath, Peter.
Afiliación
  • Tasnadi E; Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; Doctoral School of Computer Science, University of Szeged, 6720 Szeged, Hungary; Single-Cell Technologies, Ltd, 6726 Szeged, Hungary. Electronic address: tasnadi.ervin@brc.hu.
  • Sliz-Nagy A; Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary.
  • Horvath P; Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; Single-Cell Technologies, Ltd, 6726 Szeged, Hungary; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland. Electronic address: horvath.peter@brc.hu.
Cell Rep Methods ; 3(9): 100592, 2023 09 25.
Article en En | MEDLINE | ID: mdl-37725984
We introduce a generative data augmentation strategy to improve the accuracy of instance segmentation of microscopy data for complex tissue structures. Our pipeline uses regular and conditional generative adversarial networks (GANs) for image-to-image translation to construct synthetic microscopy images along with their corresponding masks to simulate the distribution and shape of the objects and their appearance. The synthetic samples are then used for training an instance segmentation network (for example, StarDist or Cellpose). We show on two single-cell-resolution tissue datasets that our method improves the accuracy of downstream instance segmentation tasks compared with traditional training strategies using either the raw data or basic augmentations. We also compare the quality of the object masks with those generated by a traditional cell population simulation method, finding that our synthesized masks are closer to the ground truth considering Fréchet inception distances.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Máscaras / Microscopía Tipo de estudio: Clinical_trials / Prognostic_studies Idioma: En Revista: Cell Rep Methods Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Máscaras / Microscopía Tipo de estudio: Clinical_trials / Prognostic_studies Idioma: En Revista: Cell Rep Methods Año: 2023 Tipo del documento: Article Pais de publicación: Estados Unidos