Your browser doesn't support javascript.
loading
Farnesoid X Receptor Plays a Key Role in Ochratoxin A-Induced Nephrotoxicity by Targeting Ferroptosis In Vivo and In Vitro.
Tang, Jiangyu; Zeng, Junya; Chen, Li; Wang, Mengmeng; He, Suibin; Muhmood, Azhar; Chen, Xingxiang; Huang, Kehe; Gan, Fang.
Afiliación
  • Tang J; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
  • Zeng J; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
  • Chen L; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
  • Wang M; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
  • He S; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
  • Muhmood A; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
  • Chen X; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
  • Huang K; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
  • Gan F; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
J Agric Food Chem ; 71(39): 14365-14378, 2023 Oct 04.
Article en En | MEDLINE | ID: mdl-37750412
ABSTRACT
The mycotoxin ochratoxin A (OTA) causes nephrotoxicity, hepatotoxicity, and immunotoxicity in animals and humans. The farnesoid X receptor (FXR) is a member of the NR family and is highly expressed in the kidney, which has an antilipid production function. Ferroptosis is an iron-dependent form of regulated cell death involved in several pathophysiological cell death and kidney injury. The present study aims to evaluate the role of FXR and ferroptosis in OTA-induced nephrotoxicity in mice and HK-2 cells. Results showed that OTA induced nephrotoxicity as demonstrated by inducing the histopathological lesions and neutrophil infiltration of the kidney, increasing serum BUN, CRE, and UA levels, increasing Ntn-1, Kim-1, and pro-inflammatory cytokine expression, and decreasing IL-10 expression and the cell viability of HK-2 cells. OTA treatment also induced FXR deficiency, ROS release, MDA level increase, GSH content decrease, and 4-HNE production in the kidney and HK-2 cells. OTA treatment induced ferroptosis as demonstrated by increasing labile iron pool and lipid peroxidation levels as well as Acsl4, TFR1, and HO-1 mRNA and protein levels, decreasing GPX4 and FTH mRNA and protein expressions, and inducing mitochondrial injury. The FXR activator (GW4064) rescued the accumulation of lipid peroxides, intracellular ROS, and Fe2+, inhibited ferroptosis, and alleviated OTA-induced nephrotoxicity. The ferroptosis inhibitor (Fer-1) prevented ferroptosis and attenuated nephrotoxicity. Collectively, this study elucidates that FXR played a critical role in OTA-induced nephrotoxicity via regulation of ferroptosis, which provides a novel strategy against OTA-induced nephrotoxicity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ferroptosis Límite: Animals / Humans Idioma: En Revista: J Agric Food Chem Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ferroptosis Límite: Animals / Humans Idioma: En Revista: J Agric Food Chem Año: 2023 Tipo del documento: Article País de afiliación: China
...