Your browser doesn't support javascript.
loading
Association between Contrast-Enhanced Computed Tomography Radiomic Features, Genomic Alterations and Prognosis in Advanced Lung Adenocarcinoma Patients.
Rinaldi, Lisa; Guerini Rocco, Elena; Spitaleri, Gianluca; Raimondi, Sara; Attili, Ilaria; Ranghiero, Alberto; Cammarata, Giulio; Minotti, Marta; Lo Presti, Giuliana; De Piano, Francesca; Bellerba, Federica; Funicelli, Gianluigi; Volpe, Stefania; Mora, Serena; Fodor, Cristiana; Rampinelli, Cristiano; Barberis, Massimo; De Marinis, Filippo; Jereczek-Fossa, Barbara Alicja; Orecchia, Roberto; Rizzo, Stefania; Botta, Francesca.
Afiliación
  • Rinaldi L; Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Guerini Rocco E; Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy.
  • Spitaleri G; Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy.
  • Raimondi S; Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Attili I; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Ranghiero A; Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Cammarata G; Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy.
  • Minotti M; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Lo Presti G; Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • De Piano F; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Bellerba F; Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Funicelli G; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Volpe S; Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Mora S; Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy.
  • Fodor C; Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Rampinelli C; Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Barberis M; Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • De Marinis F; Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Jereczek-Fossa BA; Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy.
  • Orecchia R; Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
  • Rizzo S; Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy.
  • Botta F; Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy.
Cancers (Basel) ; 15(18)2023 Sep 14.
Article en En | MEDLINE | ID: mdl-37760521
Non-invasive methods to assess mutational status, as well as novel prognostic biomarkers, are warranted to foster therapy personalization of patients with advanced non-small cell lung cancer (NSCLC). This study investigated the association of contrast-enhanced Computed Tomography (CT) radiomic features of lung adenocarcinoma lesions, alone or integrated with clinical parameters, with tumor mutational status (EGFR, KRAS, ALK alterations) and Overall Survival (OS). In total, 261 retrospective and 48 prospective patients were enrolled. A Radiomic Score (RS) was created with LASSO-Logistic regression models to predict mutational status. Radiomic, clinical and clinical-radiomic models were trained on retrospective data and tested (Area Under the Curve, AUC) on prospective data. OS prediction models were trained and tested on retrospective data with internal cross-validation (C-index). RS significantly predicted each alteration at training (radiomic and clinical-radiomic AUC 0.95-0.98); validation performance was good for EGFR (AUC 0.86), moderate for KRAS and ALK (AUC 0.61-0.65). RS was also associated with OS at univariate and multivariable analysis, in the latter with stage and type of treatment. The validation C-index was 0.63, 0.79, and 0.80 for clinical, radiomic, and clinical-radiomic models. The study supports the potential role of CT radiomics for non-invasive identification of gene alterations and prognosis prediction in patients with advanced lung adenocarcinoma, to be confirmed with independent studies.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Cancers (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Cancers (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Suiza