Your browser doesn't support javascript.
loading
Application of graphene oxide in tumor targeting and tumor therapy.
Zhang, Jia; Yang, Yibo; Li, Kun; Li, Jian.
Afiliación
  • Zhang J; College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China.
  • Yang Y; College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China.
  • Li K; College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China.
  • Li J; College of Environmental & Chemical Engineering, Applied Chemistry Key Laboratory of Hebei Province, Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, Hebei Province, China.
J Biomater Sci Polym Ed ; 34(18): 2551-2576, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37768314
ABSTRACT
Graphene oxide (GO), as a kind of two-dimensional sp2 carbon nanomaterials, has attracted great attention in many fields in the past decade. Due to its unique physical and chemical properties, GO is showing great promise in the field of biomedicine. For GO, all the atoms on its surface are exposed to the surface with ultra-high specific surface area, and a variety of groups on the surface, such as carboxyl, hydroxyl and epoxy groups, can effectively bind/load various biomolecules. Due to the availability of these groups, GO also possesses excellent hydrophilicity and biocompatibility for the modification of the desired biocompatible molecules or polymers on the surface of GO. The nano-network structure and hydrophobicity of GO enable it to load a large number of hydrophobic drugs containing benzene rings and it has been widely used as a multi-functional nano-carrier for chemotherapeutic drug or gene delivery. This review article will give an in-depth overview of the synthesis methods of GO, the advantages and disadvantages of GO used in nano-drug delivery system, the research progress of GO as a stimulus-responsive nano-drug carrier, and the application of these intelligent systems in cancer treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanoestructuras / Grafito / Neoplasias Límite: Humans Idioma: En Revista: J Biomater Sci Polym Ed Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanoestructuras / Grafito / Neoplasias Límite: Humans Idioma: En Revista: J Biomater Sci Polym Ed Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: China