Your browser doesn't support javascript.
loading
Global organic and inorganic aerosol hygroscopicity and its effect on radiative forcing.
Pöhlker, Mira L; Pöhlker, Christopher; Quaas, Johannes; Mülmenstädt, Johannes; Pozzer, Andrea; Andreae, Meinrat O; Artaxo, Paulo; Block, Karoline; Coe, Hugh; Ervens, Barbara; Gallimore, Peter; Gaston, Cassandra J; Gunthe, Sachin S; Henning, Silvia; Herrmann, Hartmut; Krüger, Ovid O; McFiggans, Gordon; Poulain, Laurent; Raj, Subha S; Reyes-Villegas, Ernesto; Royer, Haley M; Walter, David; Wang, Yuan; Pöschl, Ulrich.
Afiliación
  • Pöhlker ML; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany. poehlker@tropos.de.
  • Pöhlker C; Faculty of Physics and Earth Sciences, Leipzig Institute for Meteorology, Leipzig University, 04103, Leipzig, Germany. poehlker@tropos.de.
  • Quaas J; Atmospheric Microphysics Department, Leibniz Institute for Tropospheric Research, 04318, Leipzig, Germany. poehlker@tropos.de.
  • Mülmenstädt J; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany.
  • Pozzer A; Faculty of Physics and Earth Sciences, Leipzig Institute for Meteorology, Leipzig University, 04103, Leipzig, Germany.
  • Andreae MO; Faculty of Physics and Earth Sciences, Leipzig Institute for Meteorology, Leipzig University, 04103, Leipzig, Germany.
  • Artaxo P; Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
  • Block K; Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany.
  • Coe H; Climate and Atmosphere Research Center, The Cyprus Institute, 2121, Nicosia, Cyprus.
  • Ervens B; Biogeochemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany.
  • Gallimore P; Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA.
  • Gaston CJ; Instituto de Física, Universidade de São Paulo, São Paulo, Brazil.
  • Gunthe SS; Faculty of Physics and Earth Sciences, Leipzig Institute for Meteorology, Leipzig University, 04103, Leipzig, Germany.
  • Henning S; Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, UK.
  • Herrmann H; Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France.
  • Krüger OO; Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, UK.
  • McFiggans G; Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149-1031, USA.
  • Poulain L; Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
  • Raj SS; Center for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India.
  • Reyes-Villegas E; Atmospheric Microphysics Department, Leibniz Institute for Tropospheric Research, 04318, Leipzig, Germany.
  • Royer HM; Atmospheric Chemistry Department, Leibniz-Institute for Tropospheric Research, 04318, Leipzig, Germany.
  • Walter D; Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128, Mainz, Germany.
  • Wang Y; Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, UK.
  • Pöschl U; Atmospheric Chemistry Department, Leibniz-Institute for Tropospheric Research, 04318, Leipzig, Germany.
Nat Commun ; 14(1): 6139, 2023 Oct 02.
Article en En | MEDLINE | ID: mdl-37783680
ABSTRACT
The climate effects of atmospheric aerosol particles serving as cloud condensation nuclei (CCN) depend on chemical composition and hygroscopicity, which are highly variable on spatial and temporal scales. Here we present global CCN measurements, covering diverse environments from pristine to highly polluted conditions. We show that the effective aerosol hygroscopicity, κ, can be derived accurately from the fine aerosol mass fractions of organic particulate matter (ϵorg) and inorganic ions (ϵinorg) through a linear combination, κ = ϵorg ⋅ κorg + ϵinorg ⋅ κinorg. In spite of the chemical complexity of organic matter, its hygroscopicity is well captured and represented by a global average value of κorg = 0.12 ± 0.02 with κinorg = 0.63 ± 0.01 as the corresponding value for inorganic ions. By showing that the sensitivity of global climate forcing to changes in κorg and κinorg is small, we constrain a critically important aspect of global climate modelling.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Alemania