Your browser doesn't support javascript.
loading
Genetic Circuit Design in Rhizobacteria.
Dundas, Christopher M; Dinneny, José R.
Afiliación
  • Dundas CM; Department of Biology, Stanford University, Stanford, CA 94305, USA.
  • Dinneny JR; Department of Biology, Stanford University, Stanford, CA 94305, USA.
Biodes Res ; 2022: 9858049, 2022.
Article en En | MEDLINE | ID: mdl-37850138
ABSTRACT
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biodes Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biodes Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos