Your browser doesn't support javascript.
loading
Molecular Design of Organic Ionic Plastic Crystals Consisting of Tetracyanoborate with Ultralow Phase Transition Temperature.
Zhou, Hongyao; Sato, Shun; Nishiyama, Yusuke; Hatakeyama, Genki; Wang, Xiaohan; Murakami, Yoichi; Yamada, Teppei.
Afiliación
  • Zhou H; Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
  • Sato S; Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
  • Nishiyama Y; JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan.
  • Hatakeyama G; Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
  • Wang X; Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
  • Murakami Y; Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
  • Yamada T; Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
J Phys Chem Lett ; 14(41): 9365-9371, 2023 Oct 19.
Article en En | MEDLINE | ID: mdl-37853708
Organic ionic plastic crystals (OIPCs) are a ductile soft material where the composing ions are in isotropic free rotation, while their positions are aligned in order. The rotational motion in its plastic phase promotes ion conduction by decreasing the activation energy. Here, we report novel OIPCs comprised of tetracyanoborate ([TCB]-) and various organic cations. In particular, the OIPC composed of [TCB]- and spiro-(1,1')-bipyrrolidinium ([spiropyr]+) cations can transform into its plastic phase at ultralow temperature (Tp = -55 °C) while maintaining a high melting point (Tm = 242 °C). Replacement of the cation with either tetraalkylammonium or phosphonium and comparing their phase behavior, the high Tm was attributed to the relatively small interionic distance between [spiropyr]+ and [TCB]-. At the same time, the low Tp was realized by the restricted vibrational mode of the spirostructure, allowing the initiation of isotropic rotational motion with less thermal energy input.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem Lett Año: 2023 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem Lett Año: 2023 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Estados Unidos