Your browser doesn't support javascript.
loading
Machine learning-based spatial data development for optimizing astronomical observatory sites in Indonesia.
Sakti, Anjar Dimara; Zakiar, Muhammad Rizky; Santoso, Cokro; Windasari, Nila Armelia; Jaelani, Anton Timur; Damayanti, Seny; Anggraini, Tania Septi; Putri, Anissa Dicky; Hudalah, Delik; Deliar, Albertus.
Afiliación
  • Sakti AD; Remote Sensing and Geographic Information Science Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia.
  • Zakiar MR; Center for Remote Sensing, Institut Teknologi Bandung, Bandung, Indonesia.
  • Santoso C; Center for Remote Sensing, Institut Teknologi Bandung, Bandung, Indonesia.
  • Windasari NA; Business Strategy and Marketing Research Group, School of Business and Management, Institut Teknologi Bandung, Bandung, Indonesia.
  • Jaelani AT; Astronomy Research Group and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia.
  • Damayanti S; U-CoE AI-VLB, Institut Teknologi Bandung, Bandung, Indonesia.
  • Anggraini TS; Air and Waste Management Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, Indonesia.
  • Putri AD; Remote Sensing and Geographic Information Science Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia.
  • Hudalah D; Center for Remote Sensing, Institut Teknologi Bandung, Bandung, Indonesia.
  • Deliar A; Center for Remote Sensing, Institut Teknologi Bandung, Bandung, Indonesia.
PLoS One ; 18(10): e0293190, 2023.
Article en En | MEDLINE | ID: mdl-37862376
Astronomical observatory construction plays an essential role in astronomy research, education, and tourism development worldwide. This study develops siting distribution scenarios for astronomical observatory locations in Indonesia using a suitability analysis by integrating the physical and atmospheric observatory suitability indexes, machine learning models, and long-term climate models. Subsequently, potential sites are equalized based on longitude and latitude zonal divisions considering air pollution disturbance risks. The study novelty comes from the integrated model development of physical and socio-economic factors, dynamic spatiotemporal analysis of atmospheric factors, and the consideration of equitable low air-pollution-disturbance-risk distribution in optimal country-level observatory construction scenarios. Generally, Indonesia comprises high suitability index and low multi-source air pollution risk areas, although some area has high astronomical suitability and high-medium air pollution risk. Most of Java, the east coast of Sumatra, and the west and south coasts of Kalimantan demonstrate "low astronomical suitability-high air pollution risk." A total of eighteen locations are recommended for new observatories, of which five, one, three, four, two, and three are on Sumatra, Java, Kalimantan, Nusa Tenggara, Sulawesi, and Papua, respectively. This study provides a comprehensive approach to determine the optimal observatory construction site to optimize the potential of astronomical activities.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Astronomía / Contaminación del Aire País/Región como asunto: Asia Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2023 Tipo del documento: Article País de afiliación: Indonesia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Astronomía / Contaminación del Aire País/Región como asunto: Asia Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2023 Tipo del documento: Article País de afiliación: Indonesia Pais de publicación: Estados Unidos