Your browser doesn't support javascript.
loading
Sequestration and export of microplastics in urban river sediments.
Xia, Feiyang; Tan, Qian; Qin, Haiguang; Wang, Dunqiu; Cai, Yanpeng; Zhang, Jun.
Afiliación
  • Xia F; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 51
  • Tan Q; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 51
  • Qin H; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 51
  • Wang D; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
  • Cai Y; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 51
  • Zhang J; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China. Electronic address: zjun@glut.edu.cn.
Environ Int ; 181: 108265, 2023 Nov.
Article en En | MEDLINE | ID: mdl-37866239
In rivers, riverbeds are considered to have dual properties as a short-term sink and a source of further mobilization for microplastics. To better understand the sources, storage, and fate of microplastics in river systems, this study quantified the formation of microplastic hotspots in riverbeds and seasonal variations in microplastic inventories in riverbeds, especially for small-sized microplastics (<330 µm), with a fluorescence-based protocol. This study provides first-hand measured evidence for the sequestration of microplastics in the riverbed under low-flow conditions and its export from the riverbed under high-flow conditions. The results show that riverbeds in urban areas are still hotspots for microplastic pollution and that high inputs of urban microplastics control microplastic load in its downstream areas. Seasonal rainfall exported 34.86 % (equivalent to 4.34 × 1011 items/8.57 t) of microplastic pollution from the riverbed, and its removal capacity may be related to the rainfall intensity. Wider riverbeds are conducive to the formation of microplastic hotspots due to the flow slow down. Most importantly, rainfall-driven scouring of the riverbed can enhance the pollution of small-sized microplastics in the riverbed, especially the smallest-size microplastics (<100 µm). Therefore, this study not only contributes reliable information about the sequestration and export of microplastics in the riverbed, but also provides a possible mechanism to explain the lack of small-sized microplastics (<330 µm) in the ocean.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Microplásticos Idioma: En Revista: Environ Int Año: 2023 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Microplásticos Idioma: En Revista: Environ Int Año: 2023 Tipo del documento: Article Pais de publicación: Países Bajos