Your browser doesn't support javascript.
loading
3D bioprinting by reinforced bioink based on photocurable interpenetrating networks for cartilage tissue engineering.
Shen, Jingjie; Song, Wenjing; Liu, Jia; Peng, Xiaoyun; Tan, Zhuhao; Xu, Yingni; Liu, Sa; Ren, Li.
Afiliación
  • Shen J; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University
  • Song W; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University
  • Liu J; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University
  • Peng X; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University
  • Tan Z; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Minist
  • Xu Y; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University
  • Liu S; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University
  • Ren L; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University
Int J Biol Macromol ; 254(Pt 1): 127671, 2024 Jan.
Article en En | MEDLINE | ID: mdl-37884244
ABSTRACT
Cartilage has a limited ability to repair itself, highlighting the urgent need for suitable materials for cartilage regeneration. Achieving a balance between cell survival environment and hydrogel crosslinking density is crucial for photosensitive cell-laden cartilage repair materials to achieve both high strength and good cell viability. Here, an interpenetrating hydrogel consisted of methacrylate gelatin (GelMA) and glycidyl methacrylate silk fibroin (SG) was introduced. Compared to GelMA hydrogel, GelMA/SG had desired mechanical properties, with achieving up to 5 times of compression modulus and 6 times of compression failure energy. Meanwhile, the chondrocytes inside GelMA/SG exhibited great viability which was over 90 %. GelMA/SG as a bioink had favorable printability for digital light processing (DLP) bioprinting. The mesh DLP-printed scaffolds with high precision were created and GelMA/SG had a better shape retention ability than GelMA. Moreover, GelMA/SG cell-laden scaffolds had high strength while chondrocytes proliferated significantly in vitro culture. They were implanted under the skin of nude mice to evaluate ectopic chondrogenesis in vivo. The GelMA/SG cell-laden scaffolds indicated little deformation and high expression of collagen type II and glycosaminoglycans, which was advantageous for cartilage regeneration. The scaffold and its fabrication strategy provide potential solutions for clinical cartilage repair problems in the future.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingeniería de Tejidos / Bioimpresión Límite: Animals Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingeniería de Tejidos / Bioimpresión Límite: Animals Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article