Your browser doesn't support javascript.
loading
Multipole Expansion of Atomic Electron Density Fluctuation Interactions in the Density-Functional Tight-Binding Method.
Vuong, Van-Quan; Aradi, Bálint; Niklasson, Anders M N; Cui, Qiang; Irle, Stephan.
Afiliación
  • Vuong VQ; Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.
  • Aradi B; Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States.
  • Niklasson AMN; Bremen Center for Computational Materials Science, Universität Bremen, Bremen 28359, Germany.
  • Cui Q; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Irle S; Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.
J Chem Theory Comput ; 19(21): 7592-7605, 2023 Nov 14.
Article en En | MEDLINE | ID: mdl-37890454
ABSTRACT
The accuracy of the density-functional tight-binding (DFTB) method in describing noncovalent interactions is limited due to its reliance on monopole-based spherical charge densities. In this study, we present a multipole-extended second-order DFTB (mDFTB2) method that takes into account atomic dipole and quadrupole interactions. Furthermore, we combine the multipole expansion with the monopole-based third-order contribution, resulting in the mDFTB3 method. To assess the accuracy of mDFTB2 and mDFTB3, we evaluate their performance in describing noncovalent interactions, proton transfer barriers, and dipole moments. Our benchmark results show promising improvements even when using the existing electronic parameters optimized for the original DFTB3 model. Both mDFTB2 and mDFTB3 outperform their monopole-based counterparts, DFTB2 and DFTB3, in terms of accuracy. While mDFTB2 and mDFTB3 perform comparably for neutral and positively charged systems, mDFTB3 exhibits superior performance over mDFTB2 when dealing with negatively charged systems and proton transfers. Overall, the incorporation of the multipole expansion significantly enhances the accuracy of the DFTB method in describing noncovalent interactions and proton transfers.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Theory Comput Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Theory Comput Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos