Your browser doesn't support javascript.
loading
Reconstructing disease dynamics for mechanistic insights and clinical benefit.
Frishberg, Amit; Milman, Neta; Alpert, Ayelet; Spitzer, Hannah; Asani, Ben; Schiefelbein, Johannes B; Bakin, Evgeny; Regev-Berman, Karen; Priglinger, Siegfried G; Schultze, Joachim L; Theis, Fabian J; Shen-Orr, Shai S.
Afiliación
  • Frishberg A; Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
  • Milman N; Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany.
  • Alpert A; Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.
  • Spitzer H; CytoReason, Tel-Aviv, Israel.
  • Asani B; Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
  • Schiefelbein JB; Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
  • Bakin E; Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany.
  • Regev-Berman K; Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany.
  • Priglinger SG; Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany.
  • Schultze JL; Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany.
  • Theis FJ; CytoReason, Tel-Aviv, Israel.
  • Shen-Orr SS; CytoReason, Tel-Aviv, Israel.
Nat Commun ; 14(1): 6840, 2023 10 27.
Article en En | MEDLINE | ID: mdl-37891175
Diseases change over time, both phenotypically and in their underlying molecular processes. Though understanding disease progression dynamics is critical for diagnostics and treatment, capturing these dynamics is difficult due to their complexity and the high heterogeneity in disease development between individuals. We present TimeAx, an algorithm which builds a comparative framework for capturing disease dynamics using high-dimensional, short time-series data. We demonstrate the utility of TimeAx by studying disease progression dynamics for multiple diseases and data types. Notably, for urothelial bladder cancer tumorigenesis, we identify a stromal pro-invasion point on the disease progression axis, characterized by massive immune cell infiltration to the tumor microenvironment and increased mortality. Moreover, the continuous TimeAx model differentiates between early and late tumors within the same tumor subtype, uncovering molecular transitions and potential targetable pathways. Overall, we present a powerful approach for studying disease progression dynamics-providing improved molecular interpretability and clinical benefits for patient stratification and outcome prediction.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Vejiga Urinaria / Carcinoma de Células Transicionales Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Israel Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias de la Vejiga Urinaria / Carcinoma de Células Transicionales Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Israel Pais de publicación: Reino Unido