Your browser doesn't support javascript.
loading
S-Nitrosylated Proteins Involved in Autophagy in Triticum aestivum Roots: A Bottom-Up Proteomics Approach and In Silico Predictive Algorithms.
Mazina, Anastasia; Shumilina, Julia; Gazizova, Natalia; Repkin, Egor; Frolov, Andrej; Minibayeva, Farida.
Afiliación
  • Mazina A; Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia.
  • Shumilina J; Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia.
  • Gazizova N; Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia.
  • Repkin E; Centre for Molecular and Cell Technologies, Saint Petersburg State University, Universitetskaya Embankment, 7/9, 199034 Saint Petersburg, Russia.
  • Frolov A; Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia.
  • Minibayeva F; Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia.
Life (Basel) ; 13(10)2023 Oct 08.
Article en En | MEDLINE | ID: mdl-37895406
Autophagy is a highly conserved catabolic process in eukaryotic cells. Reactive nitrogen species play roles as inductors and signaling molecules of autophagy. A key mechanism of NO-mediated signaling is S-nitrosylation, a post-translational modification (PTM) of proteins at cysteine residues. In the present work, we analyzed the patterns of protein S-nitrosylation during the induction of autophagy in Triticum aestivum roots. The accumulation of S-nitrosylated proteins in the cells during autophagy induced with KNO2 and antimycin A was visualized using monoclonal antibodies with a Western blot analysis, and proteins were identified using a standard bottom-up proteomics approach. Protein S-nitrosylation is a labile and reversible PTM, and therefore the SNO group can be lost during experimental procedures. A subsequent bioinformatic analysis using predictive algorithms and protein-ligand docking showed that identified proteins possess hypothetical S-nitrosylation sites. Analyzing protein-protein interaction networks enabled us to discover the targets that can directly interact with autophagic proteins, and those that can interact with them indirectly via key multifunctional regulatory proteins. In this study, we show that S-nitrosylation is a key mechanism of NO-mediated regulation of autophagy in wheat roots. A combination of in silico predictive algorithms with a mass spectrometry analysis provides a targeted approach for the identification of S-nitrosylated proteins.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Life (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Life (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Suiza