Your browser doesn't support javascript.
loading
Autonomous and dynamic precursor selection for solid-state materials synthesis.
Szymanski, Nathan J; Nevatia, Pragnay; Bartel, Christopher J; Zeng, Yan; Ceder, Gerbrand.
Afiliación
  • Szymanski NJ; Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA, 94720, USA.
  • Nevatia P; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  • Bartel CJ; Department of Chemical Engineering, UC Berkeley, Berkeley, CA, 94720, USA.
  • Zeng Y; Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
  • Ceder G; Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA, 94720, USA. yanzeng@lbl.gov.
Nat Commun ; 14(1): 6956, 2023 Oct 31.
Article en En | MEDLINE | ID: mdl-37907493
ABSTRACT
Solid-state synthesis plays an important role in the development of new materials and technologies. While in situ characterization and ab-initio computations have advanced our understanding of materials synthesis, experiments targeting new compounds often still require many different precursors and conditions to be tested. Here we introduce an algorithm (ARROWS3) designed to automate the selection of optimal precursors for solid-state materials synthesis. This algorithm actively learns from experimental outcomes to determine which precursors lead to unfavorable reactions that form highly stable intermediates, preventing the target material's formation. Based on this information, ARROWS3 proposes new experiments using precursors it predicts to avoid such intermediates, thereby retaining a larger thermodynamic driving force to form the target. We validate this approach on three experimental datasets, containing results from over 200 synthesis procedures. In comparison to black-box optimization, ARROWS3 identifies effective precursor sets for each target while requiring substantially fewer experimental iterations. These findings highlight the importance of domain knowledge in optimization algorithms for materials synthesis, which are critical for the development of fully autonomous research platforms.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos