Cobalt-Doping Induced Formation of Five-Coordinated Nickel Selenide for Enhanced Ethanol Assisted Overall Water Splitting.
Small
; 20(11): e2305905, 2024 Mar.
Article
en En
| MEDLINE
| ID: mdl-37926774
To overcome the low efficiency of overall water splitting, highly effective and stable catalysts are in urgent need, especially for the anode oxygen evolution reaction (OER). In this case, nickel selenides appear as good candidates to catalyze OER and other substitutable anodic reactions due to their high electronic conductivity and easily tunable electronic structure to meet the optimized adsorption ability. Herein, an interesting phase transition from the hexagonal phase of NiSe (H-NiSe) to the rhombohedral phase of NiSe (R-NiSe) induced by the doping of cobalt atoms is reported. The five-coordinated R-NiSe is found to grow adjacent to the six-coordinated H-NiSe, resulting in the formation of the H-NiSe/R-NiSe heterostructure. Further characterizations and calculations prove the reduced splitting energy for R-NiSe and thus the less occupancy in the t2g orbits, which can facilitate the electron transfer process. As a result, the Co2 -NiSe/NF shows a satisfying catalytic performance toward OER, hydrogen evolution reaction, and (hybrid) overall water splitting. This work proves that trace amounts of Co doping can induce the phase transition from H-NiSe to R-NiSe. The formation of less-coordinated species can reduce the t2g occupancy and thus enhance the catalytic performance, which might guide rational material design.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania