Your browser doesn't support javascript.
loading
Metformin-Loaded Hyaluronic Acid-Derived Carbon Dots for Targeted Therapy against Hepatocellular Carcinoma by Glutamine Metabolic Reprogramming.
Ghosh, Aparajita; Ghosh, Anup Kumar; Zaman, Afreen; Das, Prasanta Kumar.
Afiliación
  • Ghosh A; School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India.
  • Ghosh AK; School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India.
  • Zaman A; School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India.
  • Das PK; School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India.
Mol Pharm ; 20(12): 6391-6406, 2023 Dec 04.
Article en En | MEDLINE | ID: mdl-37933877
Metabolic reprogramming is a significant hallmark of cancer that promotes chemoresistance by allowing tumor tissues to adapt to changes in the tumor microenvironment caused by anticancer therapies. Hepatocellular carcinoma (HCC), one of the most common types of primary tumors, is associated with recurrent metabolic reprogramming that maximizes cancer cell growth and proliferation. Herein, we developed metformin (MET)-loaded hyaluronic acid (HA)-derived carbon dots (HA-CD-MET) by a simple and green method with no involvement of any additives. HA-CD-MET was utilized for specifically binding the CD44 receptor overexpressed in HCC and induced glutamine metabolic rewiring to inhibit HCC cell proliferation. Exposure to HA-CD-MET resulted in ∼6.5-fold better anticancer efficacy against CD44+ Hep3B cells in comparison to CD44-, HepG2, and noncancerous HEK293 cells at a very low dose of 80 µg/mL. Moreover, treatment of three-dimensional (3D) tumor spheroid model of HCC (Hep3B) with HA-CD-MET resulted in ∼4.9-fold reduction in tumor size. This improved anticancer efficacy of HA-CD-MET was attributed to the inhibition of glutaminase-1 (GLS-1), a mitochondrial enzyme that hydrolyzes glutamine into glutamate as confirmed from immunofluorescence and immunoblotting experiments. Furthermore, treatment with HA-CD-MET resulted in downregulation of glucose transporter-1 (GLUT-1) in Hep3B cells. Consequently, cancer cells were starved from essential nutrients, glutamine, and glucose, leading to the enhancement in intracellular ROS generation. This increase in intracellular ROS accumulation activated AMP-activated protein kinase (AMPK) and inhibited AKT phosphorylation, leading to cancer cell apoptosis. Thus, this study offers the targeting of metabolic reprogramming by HA-CD-MET that opens up a promising strategy for therapeutic intervention in hepatocarcinoma.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carcinoma Hepatocelular / Neoplasias Hepáticas / Metformina Límite: Humans Idioma: En Revista: Mol Pharm Asunto de la revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carcinoma Hepatocelular / Neoplasias Hepáticas / Metformina Límite: Humans Idioma: En Revista: Mol Pharm Asunto de la revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: India Pais de publicación: Estados Unidos