Your browser doesn't support javascript.
loading
Single Pulse Nanosecond Laser-Stimulated Targeted Delivery of Anti-Cancer Drugs from Hybrid Lipid Nanoparticles Containing 5 nm Gold Nanoparticles.
Uzel, Antoine; Agiotis, Leonidas; Baron, Amélie; Zhigaltsev, Igor V; Cullis, Pieter R; Hasanzadeh Kafshgari, Morteza; Meunier, Michel.
Afiliación
  • Uzel A; Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, H3C 3A7, Canada.
  • Agiotis L; Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, H3C 3A7, Canada.
  • Baron A; Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, H3C 3A7, Canada.
  • Zhigaltsev IV; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
  • Cullis PR; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
  • Hasanzadeh Kafshgari M; Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, H3C 3A7, Canada.
  • Meunier M; Department of Engineering Physics, Polytechnique Montréal, Montreal, QC, H3C 3A7, Canada.
Small ; 19(52): e2305591, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37936336
ABSTRACT
Encapsulating chemotherapeutic drugs like doxorubicin (DOX) inside lipid nanoparticles (LNPs) can overcome their acute, systematic toxicity. However, a precise drug release at the tumor microenvironment for improving the maximum tolerated dose and reducing side effects has yet to be well-established by implementing a safe stimuli-responsive strategy. This study proposes an integrated nanoscale perforation to trigger DOX release from hybrid plasmonic multilamellar LNPs composed of 5 nm gold (Au) NPs clustered at the internal lamellae interfaces. To promote site-specific DOX release, a single pulse irradiation strategy is developed by taking advantage of the resonant interaction between nanosecond pulsed laser radiation (527 nm) and the plasmon mode of the hybrid nanocarriers. This approach enlarges the amount of DOX in the target cells up to 11-fold compared to conventional DOX-loaded LNPs, leading to significant cancer cell death. The simulation of the pulsed laser interactions of the hybrid nanocarriers suggests a release mechanism mediated by either explosive vaporization of thin water layers adjacent to AuNP clusters or thermo-mechanical decomposition of overheated lipid layers. This simulation indicates an intact DOX integrity following irradiation since the temperature distribution is highly localized around AuNP clusters and highlights a controlled light-triggered drug delivery system.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Nanopartículas del Metal / Antineoplásicos Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanopartículas / Nanopartículas del Metal / Antineoplásicos Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article País de afiliación: Canadá