Your browser doesn't support javascript.
loading
Template-free generation and integration of functional 1D magnetic nanostructures.
Sedrpooshan, Mehran; Bulbucan, Claudiu; Ternero, Pau; Maltoni, Pierfrancesco; Preger, Calle; Finizio, Simone; Watts, Benjamin; Peddis, Davide; Burke, Adam M; Messing, Maria E; Westerström, Rasmus.
Afiliación
  • Sedrpooshan M; NanoLund, Lund University, Box 118, 221 00 Lund, Sweden. rasmus.westerstrom@sljus.lu.se.
  • Bulbucan C; Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund, Sweden.
  • Ternero P; MAX IV Laboratory, Lund University, Lund, SE-22100, Sweden.
  • Maltoni P; NanoLund, Lund University, Box 118, 221 00 Lund, Sweden. rasmus.westerstrom@sljus.lu.se.
  • Preger C; Solid State Physics, Lund University, Box 118, 221 00 Lund, Sweden.
  • Finizio S; Department of Materials Science and Engineering, Uppsala University, Box 35, 751 03 Uppsala, Sweden.
  • Watts B; MAX IV Laboratory, Lund University, Lund, SE-22100, Sweden.
  • Peddis D; Ergonomics and Aerosol Technology, Lund University, Lund, SE-22100, Sweden.
  • Burke AM; Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
  • Messing ME; Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
  • Westerström R; Institute of Structure of Matter, National Research Council (CNR), Monterotondo Scalo, 00015 Rome, Italy.
Nanoscale ; 15(45): 18500-18510, 2023 Nov 23.
Article en En | MEDLINE | ID: mdl-37942933
The direct integration of 1D magnetic nanostructures into electronic circuits is crucial for realizing their great potential as components in magnetic storage, logical devices, and spintronic applications. Here, we present a novel template-free technique for producing magnetic nanochains and nanowires using directed self-assembly of gas-phase-generated metallic nanoparticles. The 1D nanostructures can be self-assembled along most substrate surfaces and can be freely suspended over micrometer distances, allowing for direct incorporation into different device architectures. The latter is demonstrated by a one-step integration of nanochains onto a pre-patterned Si chip and the fabrication of devices exhibiting magnetoresistance. Moreover, fusing the nanochains into nanowires by post-annealing significantly enhances the magnetic properties, with a 35% increase in the coercivity. Using magnetometry, X-ray microscopy, and micromagnetic simulations, we demonstrate how variations in the orientation of the magnetocrystalline anisotropy and the presence of larger multi-domain particles along the nanochains play a key role in the domain formation and magnetization reversal. Furthermore, it is shown that the increased coercivity in the nanowires can be attributed to the formation of a uniform magnetocrystalline anisotropy along the wires and the onset of exchange interactions.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2023 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2023 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Reino Unido