Your browser doesn't support javascript.
loading
Functional Analysis of a Novel Complement C5a Receptor 1-Blocking Monoclonal Antibody.
Cyranka, Leon; Mariegaard, Ida; Skjødt, Mikkel-Ole; Bayarri-Olmos, Rafael; Mollnes, Tom Eirik; Garred, Peter; Rosbjerg, Anne.
Afiliación
  • Cyranka L; Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark, leon.cyranka@regionh.dk.
  • Mariegaard I; Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
  • Skjødt MO; Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
  • Bayarri-Olmos R; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Mollnes TE; Department of Clinical Immunology, Laboratory of Molecular Medicine, Section 7631, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
  • Garred P; Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway.
  • Rosbjerg A; Research Laboratory, Nordland Hospital, Bodø, Norway.
J Innate Immun ; 15(1): 836-849, 2023.
Article en En | MEDLINE | ID: mdl-37952515
INTRODUCTION: The complement system anaphylatoxin C5a is a critical player in inflammation. By binding to complement C5a receptor 1 (C5aR1/CD88), C5a regulates many cellular functions, mainly as a potent pro-inflammatory inducer. We describe the generation and selection of a potent antagonistic C5aR1 mouse monoclonal antibody (mAb). METHODS: Initial C5aR1 hybridoma clone selection was performed with a cell-binding study in human whole blood. In-house C5aR1 mAb assessment for C5aR1 inhibition was done via the iLite® C5a assay. C5aR1 mAb specificity was investigated on C5aR1his- and C5aR2his-expressing Flp-In™-CHO cells. Physiological C5aR1 inhibition was assessed via a C5a-driven calcium flux assay and stimulation assay based on isolated polymorphonuclear leukocytes (PMNs) and a whole blood model stimulated with Escherichia coli. RESULTS: The supernatant of hybridoma clones targeting the N-terminal section of C5aR1 displayed efficient binding to C5aR1 in whole blood, which was confirmed for purified mAbs. The C5aR1 mAb 18-41-6 was selected following the assay of in-house C5aR1 mAbs via the iLite® C5a assay. The mAb 18-41-6 was specific for C5aR1. Full-size and/or F(ab')2 preparations of mAb 18-41-6 were found to efficiently abrogate C5a-induced calcium flux in neutrophils and to significantly reduce the upregulation of the activation markers CD11b (neutrophils, monocytes) and CD66b (neutrophils). CONCLUSION: Our results demonstrate that mAb 18-41-6 is a valuable tool for investigating the C5a-C5aR1 axis and a potential therapeutic candidate for inflammatory disease treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Calcio / Anticuerpos Monoclonales Límite: Animals / Humans Idioma: En Revista: J Innate Immun Asunto de la revista: ALERGIA E IMUNOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Calcio / Anticuerpos Monoclonales Límite: Animals / Humans Idioma: En Revista: J Innate Immun Asunto de la revista: ALERGIA E IMUNOLOGIA Año: 2023 Tipo del documento: Article Pais de publicación: Suiza