Your browser doesn't support javascript.
loading
Artificial Neuron Devices.
He, Ke; Wang, Cong; He, Yongli; Su, Jiangtao; Chen, Xiaodong.
Afiliación
  • He K; Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
  • Wang C; Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
  • He Y; Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
  • Su J; Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
  • Chen X; Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Chem Rev ; 123(23): 13796-13865, 2023 12 13.
Article en En | MEDLINE | ID: mdl-37976052
ABSTRACT
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sinapsis / Electrónica Límite: Humans Idioma: En Revista: Chem Rev Año: 2023 Tipo del documento: Article País de afiliación: Singapur

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sinapsis / Electrónica Límite: Humans Idioma: En Revista: Chem Rev Año: 2023 Tipo del documento: Article País de afiliación: Singapur