Your browser doesn't support javascript.
loading
A Microfabricated, Flow-Driven Grinding Mill for Mechanical Cell Lysing.
Smith, Rosemary L; England, Avery; Millis, Justin; Hirn, Corey; Collins, Scott D; Connell, Laurie B.
Afiliación
  • England A; Department of Chemsitry, University of Maine, Orono, Maine 04469, United States.
  • Hirn C; School of Marine Science, University of Maine, Orono, Maine 04469, United States.
  • Collins SD; Department of Chemsitry, University of Maine, Orono, Maine 04469, United States.
  • Connell LB; School of Marine Science, University of Maine, Orono, Maine 04469, United States.
Anal Chem ; 95(48): 17494-17501, 2023 12 05.
Article en En | MEDLINE | ID: mdl-37976075
ABSTRACT
This paper presents the design, microfabrication, and demonstration of a novel microfluidic grinding mill for the lysis of the dinoflagellate, Alexandrium, a neurotoxin-producing genus of algae that is responsible for red tide and paralytic shellfish poisoning. The mill consists of a high-speed, hydrodynamically driven microrotor coupled to a micro grinding mill that lyses robust algal cells by mechanical abrasion with single-pass efficiencies as high as 97%. These efficiencies are comparable to, or better than, current mechanical and chemical lysing methods without adding complications associated with harsh chemical additives that can interfere with subsequent downstream bioanalysis. Release of cytoplasm from lysed algae was confirmed using polymerase chain reaction (PCR) amplification of Alexandrium DNA using dinoflagellate primers.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dinoflagelados Idioma: En Revista: Anal Chem Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Dinoflagelados Idioma: En Revista: Anal Chem Año: 2023 Tipo del documento: Article