Your browser doesn't support javascript.
loading
Patterning and dynamics of membrane adhesion under hydraulic stress.
Dinet, Céline; Torres-Sánchez, Alejandro; Lanfranco, Roberta; Di Michele, Lorenzo; Arroyo, Marino; Staykova, Margarita.
Afiliación
  • Dinet C; Department of Physics, Durham University, Durham, UK.
  • Torres-Sánchez A; Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, 31 Chemin Joseph Aiguier, 13009, Marseille, France.
  • Lanfranco R; Universitat Politècnica de Catalunya-BarcelonaTech, 08034, Barcelona, Spain.
  • Di Michele L; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
  • Arroyo M; European Molecular Biology Laboratory (EMBL-Barcelona), 08003, Barcelona, Spain.
  • Staykova M; Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Nat Commun ; 14(1): 7445, 2023 11 17.
Article en En | MEDLINE | ID: mdl-37978292
ABSTRACT
Hydraulic fracturing plays a major role in cavity formation during embryonic development, when pressurized fluid opens microlumens at cell-cell contacts, which evolve to form a single large lumen. However, the fundamental physical mechanisms behind these processes remain masked by the complexity and specificity of biological systems. Here, we show that adhered lipid vesicles subjected to osmotic stress form hydraulic microlumens similar to those in cells. Combining vesicle experiments with theoretical modelling and numerical simulations, we provide a physical framework for the hydraulic reconfiguration of cell-cell adhesions. We map the conditions for microlumen formation from a pristine adhesion, the emerging dynamical patterns and their subsequent maturation. We demonstrate control of the fracturing process depending on the applied pressure gradients and the type and density of membrane bonds. Our experiments further reveal an unexpected, passive transition of microlumens to closed buds that suggests a physical route to adhesion remodeling by endocytosis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Endocitosis Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Endocitosis Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Reino Unido