Your browser doesn't support javascript.
loading
Optomechanical ring resonator for efficient microwave-optical frequency conversion.
Chen, I-Tung; Li, Bingzhao; Lee, Seokhyeong; Chakravarthi, Srivatsa; Fu, Kai-Mei; Li, Mo.
Afiliación
  • Chen IT; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98115, USA.
  • Li B; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98115, USA.
  • Lee S; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98115, USA.
  • Chakravarthi S; Department of Physics, University of Washington, Seattle, WA, 98115, USA.
  • Fu KM; Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98115, USA.
  • Li M; Department of Physics, University of Washington, Seattle, WA, 98115, USA.
Nat Commun ; 14(1): 7594, 2023 Nov 21.
Article en En | MEDLINE | ID: mdl-37990000
ABSTRACT
Phonons traveling in solid-state devices are emerging as a universal excitation for coupling different physical systems. Phonons at microwave frequencies have a similar wavelength to optical photons in solids, enabling optomechanical microwave-optical transduction of classical and quantum signals. It becomes conceivable to build optomechanical integrated circuits (OMIC) that guide both photons and phonons and interconnect photonic and phononic devices. Here, we demonstrate an OMIC including an optomechanical ring resonator (OMR), where  co-resonant infrared photons and GHz phonons induce significantly enhanced interconversion. The platform is hybrid, using wide bandgap semiconductor gallium phosphide (GaP) for waveguiding and piezoelectric zinc oxide (ZnO) for phonon generation. The OMR features photonic and phononic quality factors of >1 × 105 and 3.2 × 103, respectively. The optomechanical interconversion between photonic modes achieved an internal conversion efficiency [Formula see text] and a total device efficiency [Formula see text] at a low acoustic pump power of 1.6 mW. The efficient conversion in OMICs enables microwave-optical transduction for quantum information and microwave photonics applications.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos
...