Your browser doesn't support javascript.
loading
A semiconductor 96-microplate platform for electrical-imaging based high-throughput phenotypic screening.
Chitale, Shalaka; Wu, Wenxuan; Mukherjee, Avik; Lannon, Herbert; Suresh, Pooja; Nag, Ishan; Ambrosi, Christina M; Gertner, Rona S; Melo, Hendrick; Powers, Brendan; Wilkins, Hollin; Hinton, Henry; Cheah, Michael; Boynton, Zachariah G; Alexeyev, Alexander; Sword, Duane; Basan, Markus; Park, Hongkun; Ham, Donhee; Abbott, Jeffrey.
Afiliación
  • Chitale S; CytoTronics Inc., Boston, MA, USA.
  • Wu W; CytoTronics Inc., Boston, MA, USA.
  • Mukherjee A; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Lannon H; Department of System Biology, Harvard Medical School, Boston, MA, USA.
  • Suresh P; CytoTronics Inc., Boston, MA, USA.
  • Nag I; CytoTronics Inc., Boston, MA, USA.
  • Ambrosi CM; CytoTronics Inc., Boston, MA, USA.
  • Gertner RS; CytoTronics Inc., Boston, MA, USA.
  • Melo H; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
  • Powers B; CytoTronics Inc., Boston, MA, USA.
  • Wilkins H; CytoTronics Inc., Boston, MA, USA.
  • Hinton H; CytoTronics Inc., Boston, MA, USA.
  • Cheah M; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Boynton ZG; CytoTronics Inc., Boston, MA, USA.
  • Alexeyev A; CytoTronics Inc., Boston, MA, USA.
  • Sword D; CytoTronics Inc., Boston, MA, USA.
  • Basan M; CytoTronics Inc., Boston, MA, USA.
  • Park H; Department of System Biology, Harvard Medical School, Boston, MA, USA.
  • Ham D; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. hongkun_park@harvard.edu.
  • Abbott J; Department of Physics, Harvard University, Cambridge, MA, USA. hongkun_park@harvard.edu.
Nat Commun ; 14(1): 7576, 2023 Nov 21.
Article en En | MEDLINE | ID: mdl-37990016
High-content imaging for compound and genetic profiling is popular for drug discovery but limited to endpoint images of fixed cells. Conversely, electronic-based devices offer label-free, live cell functional information but suffer from limited spatial resolution or throughput. Here, we introduce a semiconductor 96-microplate platform for high-resolution, real-time impedance imaging. Each well features 4096 electrodes at 25 µm spatial resolution and a miniaturized data interface allows 8× parallel plate operation (768 total wells) for increased throughput. Electric field impedance measurements capture >20 parameter images including cell barrier, attachment, flatness, and motility every 15 min during experiments. We apply this technology to characterize 16 cell types, from primary epithelial to suspension cells, and quantify heterogeneity in mixed co-cultures. Screening 904 compounds across 13 semiconductor microplates reveals 25 distinct responses, demonstrating the platform's potential for mechanism of action profiling. The scalability and translatability of this semiconductor platform expands high-throughput mechanism of action profiling and phenotypic drug discovery applications.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Descubrimiento de Drogas / Ensayos Analíticos de Alto Rendimiento Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Descubrimiento de Drogas / Ensayos Analíticos de Alto Rendimiento Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido