Your browser doesn't support javascript.
loading
Natural language processing system for rapid detection and intervention of mental health crisis chat messages.
Swaminathan, Akshay; López, Iván; Mar, Rafael Antonio Garcia; Heist, Tyler; McClintock, Tom; Caoili, Kaitlin; Grace, Madeline; Rubashkin, Matthew; Boggs, Michael N; Chen, Jonathan H; Gevaert, Olivier; Mou, David; Nock, Matthew K.
Afiliación
  • Swaminathan A; Cerebral Inc, Claymont, DE, USA. akshay325@gmail.com.
  • López I; Stanford University School of Medicine, Stanford, CA, USA. akshay325@gmail.com.
  • Mar RAG; Cerebral Inc, Claymont, DE, USA.
  • Heist T; Stanford University School of Medicine, Stanford, CA, USA.
  • McClintock T; Universidad de Sonora, Mexico, NA, USA.
  • Caoili K; University of Arizona, Tucson, AZ, USA.
  • Grace M; Cerebral Inc, Claymont, DE, USA.
  • Rubashkin M; Cerebral Inc, Claymont, DE, USA.
  • Boggs MN; Cerebral Inc, Claymont, DE, USA.
  • Chen JH; Cerebral Inc, Claymont, DE, USA.
  • Gevaert O; Cerebral Inc, Claymont, DE, USA.
  • Mou D; Cerebral Inc, Claymont, DE, USA.
  • Nock MK; Stanford Center for Biomedical Informatics Research, Division of Hospital Medicine, Clinical Excellence Research Center, Department of Medicine, Stanford, CA, USA.
NPJ Digit Med ; 6(1): 213, 2023 Nov 21.
Article en En | MEDLINE | ID: mdl-37990134
Patients experiencing mental health crises often seek help through messaging-based platforms, but may face long wait times due to limited message triage capacity. Here we build and deploy a machine-learning-enabled system to improve response times to crisis messages in a large, national telehealth provider network. We train a two-stage natural language processing (NLP) system with key word filtering followed by logistic regression on 721 electronic medical record chat messages, of which 32% are potential crises (suicidal/homicidal ideation, domestic violence, or non-suicidal self-injury). Model performance is evaluated on a retrospective test set (4/1/21-4/1/22, N = 481) and a prospective test set (10/1/22-10/31/22, N = 102,471). In the retrospective test set, the model has an AUC of 0.82 (95% CI: 0.78-0.86), sensitivity of 0.99 (95% CI: 0.96-1.00), and PPV of 0.35 (95% CI: 0.309-0.4). In the prospective test set, the model has an AUC of 0.98 (95% CI: 0.966-0.984), sensitivity of 0.98 (95% CI: 0.96-0.99), and PPV of 0.66 (95% CI: 0.626-0.692). The daily median time from message receipt to crisis specialist triage ranges from 8 to 13 min, compared to 9 h before the deployment of the system. We demonstrate that a NLP-based machine learning model can reliably identify potential crisis chat messages in a telehealth setting. Our system integrates into existing clinical workflows, suggesting that with appropriate training, humans can successfully leverage ML systems to facilitate triage of crisis messages.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: NPJ Digit Med Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: NPJ Digit Med Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido