Your browser doesn't support javascript.
loading
Hexagonal Boron Nitride Slab Waveguides for Enhanced Spectroscopy of Encapsulated 2D Materials.
LaGasse, Samuel W; Proscia, Nicholas V; Cress, Cory D; Fonseca, Jose J; Cunningham, Paul D; Janzen, Eli; Edgar, James H; Pennachio, Daniel J; Culbertson, James; Zalalutdinov, Maxim; Robinson, Jeremy T.
Afiliación
  • LaGasse SW; Electronics Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA.
  • Proscia NV; NRC Postdoctoral Fellow residing at the US Naval Research Laboratory, Washington, DC, 20375, USA.
  • Cress CD; Electronics Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA.
  • Fonseca JJ; Electronics Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA.
  • Cunningham PD; Electronics Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA.
  • Janzen E; Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA.
  • Edgar JH; Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA.
  • Pennachio DJ; Electronics Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA.
  • Culbertson J; Electronics Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA.
  • Zalalutdinov M; Acoustics Division, US Naval Research Laboratory, Washington, DC, 20375, USA.
  • Robinson JT; Electronics Science and Technology Division, US Naval Research Laboratory, Washington, DC, 20375, USA.
Adv Mater ; 36(7): e2309777, 2024 Feb.
Article en En | MEDLINE | ID: mdl-37992676
The layered insulator hexagonal boron nitride (hBN) is a critical substrate that brings out the exceptional intrinsic properties of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs). In this work, the authors demonstrate how hBN slabs tuned to the correct thickness act as optical waveguides, enabling direct optical coupling of light emission from encapsulated layers into waveguide modes. Molybdenum selenide (MoSe2 ) and tungsten selenide (WSe2 ) are integrated within hBN-based waveguides and demonstrate direct coupling of photoluminescence emitted by in-plane and out-of-plane transition dipoles (bright and dark excitons) to slab waveguide modes. Fourier plane imaging of waveguided photoluminescence from MoSe2 demonstrates that dry etched hBN edges are an effective out-coupler of waveguided light without the need for oil-immersion optics. Gated photoluminescence of WSe2 demonstrates the ability of hBN waveguides to collect light emitted by out-of-plane dark excitons.Numerical simulations explore the parameters of dipole placement and slab thickness, elucidating the critical design parameters and serving as a guide for novel devices implementing hBN slab waveguides. The results provide a direct route for waveguide-based interrogation of layered materials, as well as a way to integrate layered materials into future photonic devices at arbitrary positions whilst maintaining their intrinsic properties.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania