Your browser doesn't support javascript.
loading
Comparative Study of Uracil Excited-State Photophysics in Water and Acetonitrile via RMS-CASPT2-Driven Quantum-Classical Trajectories.
Bezabih, Meseret Simachew; Kaliakin, Danil S; Blanco-González, Alejandro; Barneschi, Leonardo; Tarnovsky, Alexander N; Olivucci, Massimo.
Afiliación
  • Bezabih MS; Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States.
  • Kaliakin DS; Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States.
  • Blanco-González A; Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States.
  • Barneschi L; Dipartimento di Biotechnologie, Chimica e Farmacia, Università di Siena, I-53100 Siena, Italy.
  • Tarnovsky AN; Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States.
  • Olivucci M; Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States.
J Phys Chem B ; 127(50): 10871-10879, 2023 Dec 21.
Article en En | MEDLINE | ID: mdl-38055701
We present a nonadiabatic molecular dynamics study of the ultrafast processes occurring in uracil upon UV light absorption, leading to electronic excitation and subsequent nonradiative decay. Previous studies have indicated that the mechanistic details of this process are drastically different depending on whether the process takes place in the gas phase, acetonitrile, or water. However, such results have been produced using quantum chemical methods that did not incorporate both static and dynamic electron correlation. In order to assess the previously proposed mechanisms, we simulate the photodynamics of uracil in the three environments mentioned above using quantum-classical trajectories and, for solvated uracil, hybrid quantum mechanics/molecular mechanics (QM/MM) models driven by the rotated multistate complete active space second-order perturbation (RMS-CASPT2) method. To do so, we exploit the gradient recently made available in OpenMolcas and compare the results to those obtained using the complete active space self-consistent field (CASSCF) method only accounting for static electron correlation. We show that RMS-CASPT2 produces, in general, a mechanistic picture different from the one obtained at the CASSCF level but confirms the hypothesis advanced on the basis of previous ROKS and TDDFT studies thus highlighting the importance of incorporating dynamic electron correlation in the investigation of ultrafast electronic deactivation processes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos