Your browser doesn't support javascript.
loading
Artemisinin protects dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in a mouse model of Parkinson's disease.
Lim, Hye-Sun; Park, Gunhyuk.
Afiliación
  • Lim HS; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea.
  • Park G; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea; University of Science & Technology (UST), Korean Convergence Medicine Major, Campus of Korea Institute of Oriental Medicine, Daejeon 34113, Republic of Korea. Electronic address: gpark@kiom.re.kr.
Biomed Pharmacother ; 170: 115972, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38056239
ABSTRACT
Artemisinin is an antimalarial drug that has been used for almost half a century. However, the anti-Parkinson's disease (PD) effects of artemisinin with respect to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced oxidative stress have not yet been investigated while focusing on NF-E2-related factor 2 (Nrf2) signaling. Thus, we sought to assess the behavioral and oxidative mechanistic effects of artemisinin on MPTP-induced toxicity via the Nrf2 signaling pathway. We explored this through immunohistochemical assays, ELISA, in differentiated PC12 cells treated with siRNA, and with a PD mouse model. Artemisinin increased Nrf2 DNA-binding activity and HO-1 and NQO1 expression. Artemisinin treatment protected cells against MPP+ -induced neuronal death signaling, including NADH dehydrogenase activity, reactive oxygen species, mitochondrial membrane potential, and cleaved caspase-3. Moreover, it protected cells against MPTP-induced behavioral impairments and significantly reduced dopaminergic neuronal loss. Additionally, Nrf2 pre-inhibition using ML385 neutralized the inhibitory effects of artemisinin on dopaminergic neuronal damage and behavioral impairments induced by MPTP. Our results suggest that artemisinin inhibits MPTP-induced behavioral and neurotoxic effects in mice. This provides a foundation for further research to evaluate artemisinin as a potential therapeutic agent for PD.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Fármacos Neuroprotectores / Síndromes de Neurotoxicidad / Artemisininas Límite: Animals Idioma: En Revista: Biomed Pharmacother Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Fármacos Neuroprotectores / Síndromes de Neurotoxicidad / Artemisininas Límite: Animals Idioma: En Revista: Biomed Pharmacother Año: 2024 Tipo del documento: Article