Your browser doesn't support javascript.
loading
Vision transformers: The next frontier for deep learning-based ophthalmic image analysis.
Wu, Jo-Hsuan; Koseoglu, Neslihan D; Jones, Craig; Liu, T Y Alvin.
Afiliación
  • Wu JH; Department of Ophthalmology, Shiley Eye Institute and Viterbi Family, University of California, San Diego, La Jolla, CA, USA.
  • Koseoglu ND; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
  • Jones C; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
  • Liu TYA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
Saudi J Ophthalmol ; 37(3): 173-178, 2023.
Article en En | MEDLINE | ID: mdl-38074310
Deep learning is the state-of-the-art machine learning technique for ophthalmic image analysis, and convolutional neural networks (CNNs) are the most commonly utilized approach. Recently, vision transformers (ViTs) have emerged as a promising approach, one that is even more powerful than CNNs. In this focused review, we summarized studies that applied ViT-based models to analyze color fundus photographs and optical coherence tomography images. Overall, ViT-based models showed robust performances in the grading of diabetic retinopathy and glaucoma detection. While some studies demonstrated that ViTs were superior to CNNs in certain contexts of use, it is unclear how widespread ViTs will be adopted for ophthalmic image analysis, since ViTs typically require even more training data as compared to CNNs. The studies included were identified from the PubMed and Google Scholar databases using keywords relevant to this review. Only original investigations through March 2023 were included.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Saudi J Ophthalmol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Saudi J Ophthalmol Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: India