Your browser doesn't support javascript.
loading
Enabling Oxidation Protection and Carrier-Type Switching for Bismuth Telluride Nanoribbons via in Situ Organic Molecule Coating.
Park, Jun Beom; Wu, Wei; Wu, Jason Yingzhi; Karkee, Rijan; Kucinski, Theresa Marie; Bustillo, Karen C; Schneider, Matthew M; Strubbe, David A; Ophus, Colin; Pettes, Michael Thompson.
Afiliación
  • Park JB; Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Wu W; Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States.
  • Wu JY; Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States.
  • Karkee R; Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Kucinski TM; Department of Physics, University of California, Merced, California 95343, United States.
  • Bustillo KC; Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Schneider MM; National Center for Electron Microscopy (NCEM), Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Strubbe DA; Center for Integrated Nanotechnologies (CINT), Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Ophus C; Materials Science in Radiation and Dynamics Extremes (MST-8), Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  • Pettes MT; Department of Physics, University of California, Merced, California 95343, United States.
Nano Lett ; 23(24): 11395-11401, 2023 Dec 27.
Article en En | MEDLINE | ID: mdl-38079217
ABSTRACT
Thermoelectric materials with high electrical conductivity and low thermal conductivity (e.g., Bi2Te3) can efficiently convert waste heat into electricity; however, in spite of favorable theoretical predictions, individual Bi2Te3 nanostructures tend to perform less efficiently than bulk Bi2Te3. We report a greater-than-order-of-magnitude enhancement in the thermoelectric properties of suspended Bi2Te3 nanoribbons, coated in situ to form a Bi2Te3/F4-TCNQ core-shell nanoribbon without oxidizing the core-shell interface. The shell serves as an oxidation barrier but also directly functions as a strong electron acceptor and p-type carrier donor, switching the majority carriers from a dominant n-type carrier concentration (∼1021 cm-3) to a dominant p-type carrier concentration (∼1020 cm-3). Compared to uncoated Bi2Te3 nanoribbons, our Bi2Te3/F4-TCNQ core-shell nanoribbon demonstrates an effective chemical potential dramatically shifted toward the valence band (by 300-640 meV), robustly increased Seebeck coefficient (∼6× at 250 K), and improved thermoelectric performance (10-20× at 250 K).
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos