Your browser doesn't support javascript.
loading
Substation of vermicompost mitigates Cd toxicity, improves rice yields and restores bacterial community in a Cd-contaminated soil in Southern China.
Iqbal, Anas; Ligeng, Jiang; Mo, Zhaowen; Adnan, Muhammad; Lal, Rattan; Zaman, Maid; Usman, Sayed; Hua, Tian; Imran, Muhammad; Pan, Sheng-Gang; Qi, Jian-Ying; Duan, Meiyang; Gu, Qichang; Tang, Xiangru.
Afiliación
  • Iqbal A; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, Guangxi University, Nanning 530004, China; Scientific Observing and Experimental Station of Crop Culti
  • Ligeng J; College of Agriculture, Guangxi University, Nanning 530004, China.
  • Mo Z; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, G
  • Adnan M; CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, 210 Kottman Hall, 2021 Coffey Rd, Columbus, OH 43210, USA.
  • Lal R; CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, 210 Kottman Hall, 2021 Coffey Rd, Columbus, OH 43210, USA.
  • Zaman M; Departmetn of Entomology, University of Haripur, Khyber Pakhtunkhwa, Pakistan.
  • Usman S; College of Agriculture, Guangxi University, Nanning 530004, China.
  • Hua T; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, G
  • Imran M; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, G
  • Pan SG; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, G
  • Qi JY; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, G
  • Duan M; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, G
  • Gu Q; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, G
  • Tang X; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, G
J Hazard Mater ; 465: 133118, 2024 03 05.
Article en En | MEDLINE | ID: mdl-38101017
ABSTRACT
Cadmium (Cd) contamination in agricultural soil is a global concern for soil health and food sustainability because it can cause Cd accumulation in cereal grains. An in-situ stabilizing technology (using organic amendments) has been widely used for Cd remediation in arable lands. Therefore, the current study examined the influence of vermicompost (VC) on soil biochemical traits, bacterial community diversity and composition, Cd uptake and accumulation in rice plants and grain yield in a Cd-contaminated soil during the late growing season in 2022. Different doses of VC (i.e., V1 = 0 t ha-1, V2 = 3 t ha-1 and V3 = 6 t ha-1) and two concentrations of Cd (i.e., Cd1 = 0 and Cd2 = 50 mg Cd Kg-1 were used. We performed high-throughput sequencing of 16S ribosomal RNA gene amplicons to characterize soil bacterial communities. The addition of VC considerably affected the diversity and composition of the soil bacterial community; and increased the relative abundance of phyla Chloroflexi, Proteobacteria, Acidobacteriota, Plantomycetota, Gemmatimonadota, Patescibacteria and Firmicute. In addition, VC application, particularly High VC treatment, exhibited the highest bacterial diversity and richness (i.e., Simpson, Shannon, ACE, and Chao 1 indexes) of all treatments. Similarly, the VC application increased the soil chemical traits, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), total potassium (TK), total phosphorous (TP) and enzyme activities (i.e., acid phosphatase, catalase, urease and invertase) compared to non-VC treated soil under Cd stress. The average increase in SOC, TN, AN, TK and TP were 5.75%, 41.15%, 18.51%, 12.31%, 25.45% and 29.67%, respectively, in the High VC treatment (Pos-Cd + VC3) compared with Cd stressed soil. Redundancy analysis revealed that the leading bacterial phyla were associated with SOC, AN, TN, TP and pH, although the relative abundance of Firmicutes, Proteobacteria, Bacteroidata, and Acidobacteria on a phylum basis and Actinobacteria, Gammaproteobacteria and Myxococcia on a class basis, were highly correlated with soil environmental factors. Moreover, the VC application counteracted the adverse effects of Cd on plants and significantly reduced the Cd uptake and accumulation in rice organs, such as roots, stem + leaves and grain under Cd stress conditions. Similarly, applying VC significantly increased the fragrant rice grain yield and yield traits under Cd toxicity. The correlation analysis showed that the increased soil quantities traits were crucial in obtaining high rice grain yield. Generally, the findings of this research demonstrate that the application of VC in paddy fields could be useful for growers in Southern China by sustainably enhancing soil functionality and crop production.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oryza / Contaminantes del Suelo País/Región como asunto: Asia Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oryza / Contaminantes del Suelo País/Región como asunto: Asia Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos