Your browser doesn't support javascript.
loading
Microwave Phosphine-Plasma-Assisted Ultrafast Synthesis of Halogen-Doped Ru/RuP2 with Surface Intermediate Adsorption Modulation for Efficient Alkaline Hydrogen Evolution Reaction.
Wu, Zexing; Li, Qichang; Xu, Guangrui; Jin, Wei; Xiao, Weiping; Li, Zhenjiang; Ma, Tianyi; Feng, Shouhua; Wang, Lei.
Afiliación
  • Wu Z; Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 26
  • Li Q; Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 26
  • Xu G; College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China.
  • Jin W; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China.
  • Xiao W; College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China.
  • Li Z; College of Materials Science and Engineering, Key Laboratory of Polymer Material Advanced Manufacturing's Technology of Shandong Province, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China.
  • Ma T; School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
  • Feng S; Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 26
  • Wang L; Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 26
Adv Mater ; 36(13): e2311018, 2024 Mar.
Article en En | MEDLINE | ID: mdl-38101817
ABSTRACT
Anionic modification engineering is a crucial approach to develop highly efficient electrocatalysts for hydrogen evolution reaction. Herein, halogen elements (X = Cl, Br, and I)-modified Ru-based nanosheets (X-Ru/RuP2) are designed by rapid and eco-friendly microwave-phosphide plasma approach within 60 s. Experimental and density functional theory calculations verify that the introduced halogen element, especially Br, can optimize the surface intermediates adsorption. Specially, the designed Br-Ru/RuP2 favors the water dissociation and following hydrogen adsorption/desorption process. Then, the as-synthesized Br-Ru/RuP2 exhibits low overpotential of 34 mV to reach 10 mA cm-2 coupled with small Tafel slope of 27 mV dec-1 in alkaline electrolyte with excellent long-term stability. Moreover, the electrocatalytic performances in acid and neutral media are also boosted via Br element modification. This work paves a novel way to regulate the electronic structure of Ru-based compounds, and then can boost the electrocatalytic kinetics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania