Your browser doesn't support javascript.
loading
Monospecific and ultrasensitive detection of ofloxacin: A computational chemistry-assisted hapten screening strategy and analysis of molecular recognition mechanism.
Xiao, Jiaxu; Qin, Liangni; Zhao, Dan; Huang, Niexie; Xu, Wennuo; Zhang, Linwei; Pan, Xiaoming; Han, Shiyun; Ding, Mingyue; Li, Long; Le, Tao; Peng, Dapeng.
Afiliación
  • Xiao J; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Qin L; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Zhao D; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Huang N; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Xu W; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Zhang L; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Pan X; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Han S; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Ding M; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Li L; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China.
  • Le T; College of Life Sciences, Chongqing Normal University, Chongqing 401331, China. Electronic address: letao@cqnu.edu.cn.
  • Peng D; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China;
J Hazard Mater ; 465: 133221, 2024 03 05.
Article en En | MEDLINE | ID: mdl-38103295
ABSTRACT
Contamination in food and the environment with fluoroquinolones (FQs) has become a serious threat to the global ecological balance and public health safety. Ofloxacin (OFL) is one of the most widely utilized sterilization agents in FQs. In the process of monitoring OFL, broad-spectrum monoclonal antibodies (mAb) cannot meet the demand for monospecific detection. Here, a computational chemistry-assisted hapten screening strategy was proposed in this study. Differences in the properties of antigenic epitopes were precisely extracted through a comprehensive comparative study of 16 common FQs molecules and a monospecific and ultrasensitive mAb-3B4 for OFL was successfully prepared. The screened fleroxacin (FLE) hapten was applied in a heterologous competition strategy resulting in a 20-fold improvement in the half inhibitory concentration (IC50) of mAb-3B4 to 0.0375 µg L-1 and cross-reacted only with marbofloxacin (MAR) in regulated FQs. In addition, a single-chain variable fragment (scFv) for OFL was constructed for the first time with an IC50 of 0.378 µg L-1. Molecular recognition mechanism studies validated the reliability of this strategy and revealed the key amino acid sites responsible for OFL specificity and sensitivity. Finally, ic-ELISA and GICA were established for OFL in real samples. This work provides new ideas for the preparation of monospecific mAb and improves the monitoring system of FQs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ofloxacino / Química Computacional Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ofloxacino / Química Computacional Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos