Your browser doesn't support javascript.
loading
Ca and Mg stimulate protein synthesis in maize kernel through the action of endogenous hormones and defense enzymes.
He, Zhaoquan; Shang, Xue; Zhang, Tonghui; Yun, Jianying.
Afiliación
  • He Z; School of Life Sciences, Yan'an University, Yan'an, 716000, China; Shaanxi Provincial and Municipal Key Laboratory for Research and Utilization of Resource Plants of Loess Plateau, Yan'an University, Yan'an, 716000, China; Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, 716000,
  • Shang X; School of Life Sciences, Yan'an University, Yan'an, 716000, China; Shaanxi Provincial and Municipal Key Laboratory for Research and Utilization of Resource Plants of Loess Plateau, Yan'an University, Yan'an, 716000, China; College of Land Resource and Environment, Jiangxi Agricultural University, Ji
  • Zhang T; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
  • Yun J; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
Plant Physiol Biochem ; 206: 108280, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38103337
ABSTRACT
Soil calcium (Ca) and magnesium (Mg) mineral states in rain-fed arid regions of Northwest China are inefficient, and their levels of substitution and water-soluble states are far below the lowest threshold required for maize growth, resulting in frequent physiological diseases, restricting synthesis of kernel protein (CRP). Our study set up different levels of foliar spraying of Ca and Mg fertilizers before maize pollination to examine the response characteristics of physiological and biochemical indicators in kernel, and the driving process of CRP synthesis. The main findings were (1) Ca and Mg significantly increased the levels of CRP and endogenous hormones, and the activities of defense enzymes and CRP synthesis enzymes, which decreased significantly and stabilized at the maturity stage of maize. (2) The synthesis and accumulation of CRP were synergistically regulated by endogenous hormones, defense enzymes, and CRP synthase enzymes, with the degree of regulation varying with the level of Ca and Mg supplementation. Indole-3-acetic acid (IAA), gibberellin (GA), zeatin riboside (ZR), catalase (CAT), malondialdehyde (MDA), and glutamate dehydrogenase (GDH) were the primary physiological driving indicators of CRP synthesis, with CRP having a significant synergistic relationship with CAT and a remarkable trade-off with other driving indicators. (3) The dominant driving pathway of CRP synthesis was "Ca, Mg-IAA or GA or ZR-CAT-GDH-CRP". Ca and Mg positively affected IAA and GA levels, and IAA and GA positively regulated CAT activity. However, CAT negatively regulated GDH levels, causing GDH to negatively influence the synthesis and accumulation of CRP and its components. The findings provide theoretical support for further study of inter-root endogenous hormones and soil microbe-driven processes in the regulation of maize quality by Ca and Mg.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reguladores del Crecimiento de las Plantas / Zea mays Idioma: En Revista: Plant Physiol Biochem Asunto de la revista: BIOQUIMICA / BOTANICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reguladores del Crecimiento de las Plantas / Zea mays Idioma: En Revista: Plant Physiol Biochem Asunto de la revista: BIOQUIMICA / BOTANICA Año: 2024 Tipo del documento: Article