Your browser doesn't support javascript.
loading
Early prediction of drug-resistant epilepsy using clinical and EEG features based on convolutional neural network.
Yang, Shijun; Li, Shanshan; Wang, Hanlin; Li, Jinlan; Wang, Congping; Liu, Qunhui; Zhong, Jianhua; Jia, Min.
Afiliación
  • Yang S; Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wu Yang Ave., 445000, En Shi, Hubei Province, China.
  • Li S; Department of Medical Ultrasound, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 88 Jin Long Ave., 445000, En Shi, Hubei Province, China.
  • Wang H; Department of Medicine, The Xi 'an Jiaotong University, 76 Yan Ta West Ave., 710000, Xi 'an, Shanxi Province, China.
  • Li J; Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wu Yang Ave., 445000, En Shi, Hubei Province, China.
  • Wang C; Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wu Yang Ave., 445000, En Shi, Hubei Province, China.
  • Liu Q; Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wu Yang Ave., 445000, En Shi, Hubei Province, China.
  • Zhong J; Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wu Yang Ave., 445000, En Shi, Hubei Province, China. Electronic address: 532603827@qq.com.
  • Jia M; Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, 158 Wu Yang Ave., 445000, En Shi, Hubei Province, China. Electronic address: 28242707@qq.com.
Seizure ; 114: 98-104, 2024 Jan.
Article en En | MEDLINE | ID: mdl-38118285
ABSTRACT

OBJECTIVE:

Machine learning utilization in electroencephalogram (EEG) analysis and epilepsy care is fast evolving. Thus, we aim to develop and validate two one-dimensional convolutional neural network (CNN) algorithms for predicting drug-resistant epilepsy (DRE) in patients with newly-diagnosed epilepsy based on EEG and clinical features.

METHODS:

We included a total of 1010 EEG signal epochs and 15 clinical features from 101 patients with epilepsy. Each patient had 10 epochs of EEG signal data, with each signal recorded for 90 s. The ratio of development set and validation set was 8020, and ten-fold cross validation was performed. First, a CNN algorithm was used to extract EEG features automatically. Then, Two one-dimensional CNNs were crafted.. Accuracy, specificity, precision, sensitivity, F1-score, kappa statistics, mean square error (MSE) and area under the curve (AUC) were calculated to evaluate the classifiers performance.

RESULTS:

The clinical-EEG model showed good performance and clinical practical value, with the accuracy, specificity, precision, sensitivity, F1-score, kappa statistics, best MSE and AUC in test set were 0.99, 0.72, 0.82, 0.96, 0.89, 0.83, 32.00, 0.81, respectively, and the accuracy in validation set was 0.84. In the EEG model, the accuracy, specificity, precision, sensitivity, F1-score, kappa statistics, best MSE and AUC in test set were 0.99, 0.59, 0.82, 0.90, 0.86, 0.72, 181.76, 0.76, respectively, and the accuracy in validation set was 0.81.

CONCLUSION:

We constructed a clinical-EEG model showed good potential for predicting DRE in patients with newly-diagnosed epilepsy, which could help identify patients at high risk of developing DRE at earlier stages.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Epilepsia / Epilepsia Refractaria Límite: Humans Idioma: En Revista: Seizure Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Epilepsia / Epilepsia Refractaria Límite: Humans Idioma: En Revista: Seizure Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido