Your browser doesn't support javascript.
loading
Microplastics reach the brain and interfere with honey bee cognition.
Pasquini, Elisa; Ferrante, Federico; Passaponti, Leonardo; Pavone, Francesco Saverio; Costantini, Irene; Baracchi, David.
Afiliación
  • Pasquini E; Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino 50019, Italy; Center for Mind/Brain Science (CIMeC), University of Trento, Rovereto, Italy.
  • Ferrante F; Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino 50019, Italy; Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100 6 Viterbo, Italy.
  • Passaponti L; Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino 50019, Italy.
  • Pavone FS; European Laboratory for Non-Linear Spectroscopy, Via N. Carrara 1, Sesto Fiorentino 50019, Italy; Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, Sesto Fiorentino, 50019 Florence, Italy.
  • Costantini I; Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino 50019, Italy; European Laboratory for Non-Linear Spectroscopy, Via N. Carrara 1, Sesto Fiorentino 50019, Italy.
  • Baracchi D; Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino 50019, Italy. Electronic address: david.baracchi@unifi.it.
Sci Total Environ ; 912: 169362, 2024 Feb 20.
Article en En | MEDLINE | ID: mdl-38128669
ABSTRACT
Scientific research on the impact of microplastics (MPs) in terrestrial systems is still emerging, but it has confirmed adverse health effects in organisms exposed to plastics. Although recent studies have shown the toxicological effects of individual MPs polymers on honey bees, the effects of different polymer combinations on cognitive and behavioural performance remain unknown. To fill this knowledge gap, we investigated the effects of oral exposure to spherical MPs on cognitive performance and brain accumulation in the honey bee Apis mellifera. We evaluated the acute toxicity, after a two-day exposure, of polystyrene (PS - 4.8-5.8 µm) and plexiglass (Poly(methyl methacrylate), or PMMA - 1-40 µm) MPs, and a combination of the two (MIX), at two environmentally relevant and one higher concentration (0.5, 5 and 50 mg L-1) and analysed their effects on sucrose responsiveness and appetitive olfactory learning and memory. We also used fluorescent thermoset amino formaldehyde MPs (1-5 µm) to explore whether microspheres of this diameter could penetrate the insect blood-brain barrier (BBB), using Two-Photon Fluorescence Microscopy (TPFM) in combination with an optimized version of the DISCO clearing technique. The results showed that PS reduced sucrose responsiveness, while PMMA had no significant effect; however, the combination had a marked negative effect on sucrose responsiveness. PMMA, PS, and MIX impaired bee learning and memory in bees, with PS showing the most severe effects. 3D brain imaging analysis using TFPM showed that 1-5 µm MPs penetrated and accumulated in the brain after only three days of oral exposure. These results raise concerns about the potential mechanical, cellular, and biochemical damage that MPs may cause to the central nervous system.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plásticos / Microplásticos Límite: Animals Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plásticos / Microplásticos Límite: Animals Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: Italia