Your browser doesn't support javascript.
loading
MoS2-Based Memristor: Robust Resistive Switching Behavior and Reliable Biological Synapse Emulation.
Ling, Yongfa; Li, Jiexin; Luo, Tao; Lin, Ying; Zhang, Guangxin; Shou, Meihua; Liao, Qing.
Afiliación
  • Ling Y; Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.
  • Li J; School of Mechanical and Electronic Engineering, Hezhou University, Hezhou 542899, China.
  • Luo T; Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.
  • Lin Y; Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.
  • Zhang G; Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.
  • Shou M; Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.
  • Liao Q; Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China.
Nanomaterials (Basel) ; 13(24)2023 Dec 11.
Article en En | MEDLINE | ID: mdl-38133014
ABSTRACT
Memristors are recognized as crucial devices for future nonvolatile memory and artificial intelligence. Due to their typical neuron-synapse-like metal-insulator-metal(MIM) sandwich structure, they are widely used to simulate biological synapses and have great potential in advancing biological synapse simulation. However, the high switch voltage and inferior stability of the memristor restrict the broader application to the emulation of the biological synapse. In this study, we report a vertically structured memristor based on few-layer MoS2. The device shows a lower switching voltage below 0.6 V, with a high ON/OFF current ratio of 104, good stability of more than 180 cycles, and a long retention time exceeding 3 × 103 s. In addition, the device has successfully simulated various biological synaptic functions, including potential/depression propagation, paired-pulse facilitation (PPF), and long-term potentiation/long-term depression (LTP/LTD) modulation. These results have significant implications for the design of a two-dimensional transition-metal dichalcogenides composite material memristor that aim to mimic biological synapses, representing promising avenues for the development of advanced neuromorphic computing systems.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza