Your browser doesn't support javascript.
loading
Association of skeletal muscle oxidative capacity with muscle function, sarcopenia-related exercise performance, and intramuscular adipose tissue in older adults.
Yoshiko, Akito; Shiozawa, Kana; Niwa, Shiori; Takahashi, Hideyuki; Koike, Teruhiko; Watanabe, Kohei; Katayama, Keisho; Akima, Hiroshi.
Afiliación
  • Yoshiko A; Faculty of Liberal Arts and Sciences, Chukyo University, Toyota, Japan. yoshiko@lets.chukyo-u.ac.jp.
  • Shiozawa K; Department of Exercise and Sports Physiology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
  • Niwa S; Japan Society for the Promotion of Science, Tokyo, Japan.
  • Takahashi H; Department of Nursing, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
  • Koike T; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
  • Watanabe K; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.
  • Katayama K; Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
  • Akima H; School of Health and Sport Sciences, Chukyo University, Toyota, Japan.
Geroscience ; 46(2): 2715-2727, 2024 04.
Article en En | MEDLINE | ID: mdl-38153667
ABSTRACT
Muscle function and exercise performance measures, such as muscle endurance capacity, maximal strength, chair stand score, gait speed, and Timed Up and Go score, are evaluated to diagnose sarcopenia and frailty in older individuals. Furthermore, intramuscular adipose tissue (IntraMAT) content increases with age. Skeletal muscle oxidative capacity determines muscle metabolism and maintains muscle performance. This study aimed to investigate the association of skeletal muscle oxidative capacity with muscle function, exercise performance, and IntraMAT content in older individuals. Thirteen older men and women participated in this study. Skeletal muscle oxidative capacity was assessed by the recovery speed of muscle oxygen saturation after exercise using near-infrared spectroscopy from the medial gastrocnemius. We assessed two muscle functions, peak torque and time to task failure, and four sarcopenia-related exercise performances handgrip strength, gait speed, 30-s chair stand, and Timed Up and Go. The IntraMAT content was measured using axial magnetic resonance imaging. The results showed a relationship between skeletal muscle oxidative capacity and gait speed but not with muscle functions and other exercise performance measures. Skeletal muscle oxidative capacity was not related to IntraMAT content. Skeletal muscle oxidative capacity, which may be indicative of the capacity of muscle energy production in the mitochondria, is related to locomotive functions but not to other functional parameters or skeletal fat infiltration.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sarcopenia Límite: Aged / Female / Humans / Male Idioma: En Revista: Geroscience Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sarcopenia Límite: Aged / Female / Humans / Male Idioma: En Revista: Geroscience Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Suiza