Your browser doesn't support javascript.
loading
Optimizing health service location in a highly urbanized city: Multi criteria decision making and P-Median problem models for public hospitals in Jeddah City, KSA.
Murad, Abdulkader; Faruque, Fazlay; Naji, Ammar; Tiwari, Alok; Qurnfulah, Emad; Rahman, Mahfuzur; Dewan, Ashraf.
Afiliación
  • Murad A; Department of Urban and Regional Planning, Faculty of Architecture and Planning, King Abdulaziz University, Jeddah, KSA.
  • Faruque F; Department of Preventive Medicine, UMMC, Jackson, Mississippi, United States of America.
  • Naji A; Department of Urban and Regional Planning, Faculty of Architecture and Planning, King Abdulaziz University, Jeddah, KSA.
  • Tiwari A; Department of Urban and Regional Planning, Faculty of Architecture and Planning, King Abdulaziz University, Jeddah, KSA.
  • Qurnfulah E; Department of Urban and Regional Planning, Faculty of Architecture and Planning, King Abdulaziz University, Jeddah, KSA.
  • Rahman M; Department of Civil Engineering, International University of Business Agriculture and Technology, Dhaka, Bangladesh.
  • Dewan A; Spatial Sciences Discipline, School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia.
PLoS One ; 19(1): e0294819, 2024.
Article en En | MEDLINE | ID: mdl-38165977
ABSTRACT
Rapid urbanization and population growth have increased the need for optimizing the location of health services in highly urbanized countries like Kingdom of Saudi Arabia (KSA). This study employs a multiple-criteria decision making (MCDM) approach, e.g., fuzzy overlay technique by combining the P-Median location-allocation model, for optimizing health services. First, a geodatabase, containing public hospitals, road networks and population districts, was prepared. Next, we investigated the location and services of five public hospitals in Jeddah city of KSA, by using a MCDM model that included a fuzzy overlay technique with a location-allocation model. The results showed that the allocated five hospitals served 94 out of 110 districts in the study area. Our results suggested additional hospitals must be added to ensure that the entire city is covered with timely hospital services. To improve the existing situation, we prioritized demand locations using the maximize coverage (MC) location problem model. We then used the P-Median function to find the optimal locations of hospitals, and then combined these two methods to create the MC-P-Median optimizer. This optimizer eliminated any unallocated or redundant information. Health planners can use this model to determine the best locations for public hospitals in Jeddah city and similar settings.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Servicios de Salud / Hospitales Públicos Tipo de estudio: Prognostic_studies Aspecto: Determinantes_sociais_saude Límite: Humans País/Región como asunto: Asia Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Servicios de Salud / Hospitales Públicos Tipo de estudio: Prognostic_studies Aspecto: Determinantes_sociais_saude Límite: Humans País/Región como asunto: Asia Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos